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Examples of Galois Extension 

Welcome back, in the last 2 videos we proved an extremely important theorem which 

characterised Galois extensions. So, let me quickly show that theorem to you. 
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So, it showed that if you have a finite extension, it is Galois, if and only if it is a splitting field 

of a separable polynomial.  
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So, let me now talk about a couple of important corollaries of this and they are very easy 

corollaries. And this is in fact, is the most important corollaries for which we prove that 

theorem. So, 1 is essentially contained in the theorem itself. So, let K over F be a finite 

extensions so fields then K over F is Galois, this is a different kind of characterisation. Earlier 

we said, it is Galois, if and only if it is a splitting field of a separable polynomial.  

Now we are saying that, K over F is Galois if and only if K over F is normal and separable. 

So, this is the most common way of stating the pervious preposition, theorem. And in fact, 

you will see this in any books on Galois Theory. So, let us suppose that K is the splitting 

field, K Galois, K over F is Galois implies K is the splitting field of a separable polynomial 

over capital F. So, this is the theorem. So, let me us capital H..  



This is the theorem, now this means that first K over F is normal, this is trivial because it is a 

splitting field of.. Separable or not, it is a splitting field of a polynomial so it is normal. 

Second, in the course of the proof, in the course of in fact, this forward direction of the proof, 

and I noted this in fact, at the end of the fact, we showed that K over F Galois implies K over 

F separable.  

So, let me now point out where I did this, but in the beginning of the proof of the previous 

theorem, we started with alpha in capital K and we in fact, constructed its splitting field… 

sorry constructed its irreducible polynomial and we showed that it has distant roots. So, it is 

separable. If it is Galois, then it is normal and separable, the other direction is also clear, so if 

K over F is normal implies by definition, K is the splitting field of a polynomial, no adjective 

is added to that polynomial.  

Normality simply says, it is a splitting field of a polynomial F over F. Now K over F is 

normal, separable implies F is separable. Because F is… every irreducible factor is F is a 

irreducible polynomial of some element of capital K, so F is separable. So, it is splitting field 

of a separable polynomial, hence is it is normal.. sorry hence it is Galois. So, that proves that 

a normal separable extension is automatically Galois.  

So several corollaries of this, maybe I will call it corollary 1, so corollary 2 is K over L over 

F are field extensions. K over F is Galois implies K over L is Galois. This is trivial, right? 

Because K over F is Galois, implies K over F is normal and K over F is separable. But 

normality and separability is carried to K over L. In fact, separability also follows L over F 

but normality does not follow L over F, so K over L is normal and K over L is separable so K 

over L is Galois.  

Let me just warn you that, it is not true that L over F is Galois, normality fails not 

separability. In fact, we saw an example of this, right? You have a degree 4 extension or 

degree 6 extension which we will discuss later, has intermediate field which is degree 3, Q 

adjoined cube root of 2 and omega, Q adjoin cube root of 2 Q. So, this is Galois, not Galois. 

And finally, this is the example where we are going to let characteristic of F be 0 or F is 

finite, more generally F is perfect.  

Remember this means that, its characteristic is 0 or every element of F is a Pth power. In 

characteristic is P and every element is a Pth power. Then the finite extension K over F is 

Galois if and only if K over F is normal, trivial corollary because we know that Galois if and 



only if normal and separable, if the base field is perfect it is automatically separable of Galois 

is if and only if normal. So, this is…. For example, dealing with only characteristics 0 of its 

Galois is nothing more than normal. So, that is useful so keep in mind.  
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So, let me just quickly do an example that illustrates some of the features of the proof of the 

previous video. So, let me… these kind of things, we do not typically study in this course but 

I wanted to do this for your understanding of the process in which we proved the previous 

theorem. Let us take this to be, K to be CT, so this is the field of rational functions in one 

variable… remember this means the elements are ratios of rational polynomials.  

They are square bracket t and G of course is non-zero. So, we want to look at 2 

automorphisms of K, sigma 1 and sigma 2. Sigma 1 sense.. because I want to think of C 

automorphisms, everything in C is fixed but P goes to i,t, i of course is an imaginary square 

root of minus 1 so sigma sends C to i, t. Sigma 2 sends t to t inverse. So, t goes to i, t under 

sigma 1, sigma 2 sends t to t inverse.  

So, it is easy to check for you and these are easy exercises that I made it for you. Order of 

sigma 1 is 4 that means sigma 1 square, sigma 2 square are all different identity. And sigma 1 

power 4 is identity. Order of sigma 2 is 2 that is even more easier because t goes t inverse 

under sigma 2 and t inverse goes to t. Here t goes to i, t under sigma 1 but then i, t goes to, i is 

constant so i times i, t which is minus t. That is 2 times.  

Third time, it will go to minus i, t because minus 1 is constant, t inverse i, t. And finally it 

goes to minus i times i, t which is t. So, sigma 1 power 4 is identity and none of the smaller 

powers is identity. So, in fact, the other... I mean this is easy but the main exercise is the 

group and we need to check that sigma 2, sigma 1 is equal to sigma 1 cube sigma 2. This is a 

simple calculation. You just see where t goes under both direction, both maps and show that 

the group generated by sigma 1 and sigma 2 is the dihedral group, in fact, it is.. order is 8.  



So, I am going to use this, I am not going to do this in this video, you can check this, this is a 

simple calculation. This is exactly the defining feature of a dihedral, you have 2 generators, 

d4 has 2 generators, one is order 2, one is order 4 and 2 generators are this property. So, now 

use this and prove this on your own. Now I want to understand, let us call this G, let G be the 

group of automorphisms generated by sigma 1 and sigma 2, we know that it is a diagonal 

group and we know that it is order 8, so what is the fixed field of this group.  

So, the claim first is, K is of course ct, K power G has degree 8 because K colon K power G 

is the order of G which is 8 so that is part of this exercise. In fact, that is what you want to see 

and is the fact that it is in fact, before it is irrelevant for us, it is order 8. So, now I want to 

understand this more carefully, so first note that, take this particular element, P power 4 plus t 

power minus 4 in K.  

This of course is in K, remember t inverse is our usual way of denoting 1 by t. So, t power 4 

plus 1 by t power 4. So, then what is sigma 1 of t power 4 plus t power minus 4. So, t goes to 

i, t so this is i, t power 4 plus i, t power minus 4 which is of course t power 4 t power minus 4. 

Similarly, sigma 2 of this is t power minus 4 plus t power 4. So, that means t power 4plus t 

power minus 4 is fixed by every element of G. It is fixed by the generators of G so it is fixed 

by every element of G.  

So, that means, entire… is containing the fixed field because everything is certainly 

containing the fixed field. So, we have c power P power 4, c adjoin P power 4 plus t power 

minus 4 is in K, is in KG. Now we want to understand this, so what I am saying is that, this 

particular element is fixed by G, complex number are all fixed by G, so any rational function 

in this with complex coefficient is fixed by G so that is in K power G.  

Now, in order to understand the relation between these 2 and in fact, to show that these are 

equal, I want to understand what is the irreducible polynomial of t which is in K over K 

power G. And this is the point I wanted to emphasise that is the reason I am doing this 

example, if you go back to the previous theorem that we proved in the last 2 or 3 videos, this 

theorem and started with argumentory element.  

We computed its irreducible polynomial like this, and we remarked at that time, that these are 

very useful way to find the irreducible polynomial of an element in a Galois extension. So, 

here all we need to do is, look at the imagine of that element and all the Galois group 



elements and take the distinct set of those and take x minus alpha 1, x minus alpha 2, x minus 

alpha r. Here of course K over KG is Galois.  

In our case, K over KG is Galois, I mean this is trivial, right? Because KG is the Galois group 

of the… KG is the fixed field of G. So, anything from k over KG is Galois, that is the 

definition of Galois extensions. So, to find the irreducible polynomial, of t over KG, let us 

look at the orbit of t, this is the group theory language, orbit of t under G action. So, this is 

the orbit, meaning where t goes in all the group elements is what we looked at.  
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So, what is orbit of? This is easy now, sigma 1, of course t is there, sigma 1 sends it to i, t. 

That is sigma 1 goes to i,t. Sigma 1 square, I think I wrote these things, will send it to minus t 

and sigma 1 cube will send it to minus i, t and then you have t which you do not need to write 

it again, t is already there. Sigma 2 sends t to t inverse. Sigma 1 and sigma 2 will send it to i, t 

inverse. And then you will get sigma 1 of this.  

So, here to here is sigma 1 and again sigma 1,what you get? I times i, t inverse, so minus t 

inverse. And finally again sigma 1 so minus t inverse times i which is i minus i to inverse, so 

this is again sigma 1. So, I have this clear so these are the 8 elements in the orbit, in fact, it 

just happens that, they all are distinct, in general remember some of them can equal each 

other because t generates the extension here, it must have all the 8 distinct, 1, 2, 3, 4, 5, 6, 7, 8 

distinct elements of orbit.  

So, the irreducible polynomial of P over KG is x minus P, x minus i, t, x plus t, x plus i, t, so 

this correspondence to the first 4, now x minus t inverse, x minus i, t inverse, x plus t inverse, 

x plus i, t inverse. Now it is clear that, you can combine these 2 for example, you will get x 

square minus t square, you can combine this to get x square plus t square and you combine all 

of them to get x power 4 minus t power 4 and similarly you combine this 2 to get x square 

minus t minus 2, x square plus t power minus 2, so you will get x power 4 minus t power 

minus 4. But this is equal to x power 4 minus t power 4 plus t power minus 4, this is x power 

8, t power 4 plus t power mins 4, x power 4 plus t power 8.. sorry this is 1.  

So, this is the irreducible polynomial of this over KG. So, this is correct, minus t power 4, 

minus t power. So this is fine but note that this polynomial actually lives in C, P power 4 plus 



t power minus 4 bracket x because the coefficients are 1 which is here of course, P power 4 

minus t power 4 plus t power minus 4 which is here and 1 is here. So, that means… now let 

us draw the picture again, we are almost done and we have K which is CP and K power G 

which is a degree 8 extension and then we have C t power 4 plus t power minus 4.  

Now the irreducible polynomial of t over this has degree 8 because for example, this is 

generated by, this is also KG, another way of this, this is KG bracket t, t is of course, t is 

algebraic over, so this is where things get wired here, t is algebraic over KG, t is not algebraic 

over C, it is transcendental over.. so t is algebraic over this, so this is generated by t. So, that 

is the degree 8 extension but this on the other hand, this is also, basically this is also, if you 

call this f, this is also f bracket t.  

So, t is also algebraic over F, if you remember this, all the way down, so all these are 

transcendental extensions. These are all close to each other but there is along gap between 

these and C. This is also transcendental over C clearly. These are all finite extensions of each 

other, 3 of them. But they are all transcendental extensions of C. So, I am emphasising this 

because this round bracket t, in fact, the same square bracket t, because t is algebraic over 

this, t is algebraic over this.  

In fact, the same polynomial is…t satisfies this polynomial over F so it is algebraic where this 

round bracket is not to be confused with square bracket, those will be very different. Whereas 

KG…. I mean this is something we discussed a long time ago. So, this is just to make the 

same point, so what we had is that, irreducible polynomial of t over KG is this, and the same 

polynomial lives over this, so the degree of the extension, so these are just parenthetical 

remark, so the degree of K over F is remember same as F t over F because Ft is equal to K, 

this is just like an algebraic element, t is an algebraic element over F.  

This Ft is equal to K, so this is equal to the degree of irreducible polynomial of p over f, by 

definition, this is the degree of irreducible polynomial P over F. But this is less than equal to 

8 because P satisfies a particular degree in polynomial. So, the irreducible polynomial maybe 

of smaller degree so it sends at most 8, so this polynomial leaves in FX, because F is equal to 

this. So the irreducible polynomial of t over this could be… maybe smaller degree so it is at 

least at most 8, so this is already 8 and this we just concluded, is less than or equal to 8.  

But this is… Some number is positive number so this is greater than equal to 8. On the other 

hand… so let me just wrap it up, on the other hand, K colon F is greater than and equal to K 



colon KG which is 8. So, K colon F is greater than equal to 8. So, K colon F is equal to 8 that 

means, this is also equal to 8 and that means this is an equality. And hence, k power G is 

equal to F which is C adjoin… this is the statement I wanted to make because the question 

was find the, I do not know where I wrote that, what is K power G?  

K power G is concretely described by this analysis. So, it is C adjoined t power 4 plus t 

power minus 4. So, this is not that important for what we do next, but I wanted to do this 

because this illustrates the various points raised in the previous theorem which is an 

extremely important theorem, so please go over the proof of the theorem, the 2 videos then 

the corollaries and the examples which we just did because these are all important features of 

Galois Theory.  

And in the next video we will start adding towards the main theorem of Galois theory, so I 

will first give you a couple of motivating examples and then we will state and prove the main 

theorem of Galois theory. Thank you.  


