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Welcome back, in the last video we define what normal extensions are, in fact I proved a 

theorem given 3 equivalent conditions for an extension to be normal. And we also looked at 

another criteria for an extension to be Galois. So, it is a purely numerical statement which says 

that the degree of the extension should be equal to the order of the Galois group. 
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So, we have done quite a bit of material in the last few lectures. So, let us take stock and do a 

few exercises to make sure that we understand all the various features of what we have learned in 

the last few videos. So, today in this problem session, we are going to essentially look at several 

examples and show that, determine the Galois groups, determine if it is a Galois extension, if it is 

a normal extension and so on. So, in each of the below extensions, find the Galois group and 

determine if the extensions are Galois, normal or normal. 

So, we will do a few examples just so that we are familiar with this. So, some of these we have 

discussed before, let us take this and Q. So here, the Galois group I will quickly go over this 

because, we discussed this already, Galois group here is trivial because, cube root of 2 has only 

one possible image in K. In general, in complex numbers, cube root of 2 can go to cube root of 2, 

cube root of 2 omega, cube root of 2 times omega square, but the second and third ones are not in 

K. 

So, the only possibilities for cube, images of cube root of image of cube root of 2 is just cube 

root of itself. So, this is a Galois group and the fixed field is K itself. So, this is not Galois 

because the fixed field is not Q or equivalently the degree of the fixed field is one whereas the 

extension of the, degree of the extension is 3. So, K colon K is 1, K colon K is, so what I mean is 

K over Q has degree 3. But the Galois group has ordered 1, so this is not Galois. 



It is also not normal, I claim. Because, for example, remember the second condition of the 

previous theorem, it says that if a polynomial, irreducible polynomial has one root, it splits 

completely, that is not the case here. X cube minus 2 is irreducible has a root in K, but does not 

split completely. 

Because it only splits as a linear polynomial, terms a quadratic polynomial because that other 2 

roots are not in K, so it is not Galois not normal. And by the remark I ended the last video with 

because this is characteristic 0, Galois and normal are in fact equivalent. So, if it is not Galois, it 

cannot be normal. But we have not proved that. So, let us separately check that in each example. 

The second example is also something that we have seen before, K is Q adjoint root 2 comma I 

and F is Q again. 

So, here are the degree is 4 and the Galois group, again I will go this fast because, we have 

discussed this in detail in earlier videos, root 2 can go to either root 2 or minus root 2, i can go to 

either i or minus i, and those 2 times 2 4 choices will give you a group which is isomorphic to 

this. So, maybe I have not quite proved this, that it is isomorphic to this, let us do that. So, there 

are 4 elements in Galois group of K over F. 

What are they, 1, sigma 1, sigma 2, and sigma 3, this is something that I have used earlier 

notation, so I will not write them again. But sigma 1 sends i2 minus i, and root 2 to root 2. 

Maybe I am interchanging these but it does not matter, sigma 2 send i to i root 2 to minus root 2. 

And sigma 3 sends i2 minus i root 2 to minus root 2. So, here you see that sigma 1, sigma 2 is 

sigma 3, in fact more directly, you see that sigma 1 square equals sigma 2 square equals sigma 3 

square is identity, each of them is an order to element. 

So, there are only 4 groups of isomorphism, there are only 2 groups up to isomorphism of order 

4. One is a cyclic group Z mod 4 Z, which admits a degree 4 element, the other is Z mod 2 Z 

cross Z mod 2 Z which is not cyclic, in other words, it does not have a degree 4, order 4 element. 

So, every element is ordered 2. So, this must be Z mod 2 Z cross Z mod 2 Z.  

So, that is the Galois group and it is Galois because, for example, the cardinality of the Galois 

group is 4, which is the degree of the extension it is also normal, because it is a splitting field of, 

so I am going to write this somewhat messily, but I hope this is okay. It is a splitting field of this, 



because you take x square minus 2 it splits completely to take x square plus 1 it splits completely 

however, it and further it is generated by the roots. So, it is normal and Galois. 
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And the third example is more general example. So, let K be any extension of Q of degree 2. So, 

what we have is K over Q degree 2. So, I claim that here no matter what case, I claim Galois is 

mod 2 Z and K over Q is normal and Galois. So, this is true, in general actually this is true even 

if you replace Q by any other field of characteristic 0. So, I will do this example here just to stick 

to a simple case and we will discuss more generally what this means later. 

So, let alpha be in K which is not in cube. So, first observation is that K is Q alpha because it is a 

degree to extension. So, if Q alpha is an intermediate field, it is either equal to K or equal to Q 

because this product of these 2 numbers is 2. So, you can not have, you must have one of them 

equal to 1. So, either Q alpha is equal to Q in which case alpha is in Q, but alpha is not in Q. So, 



Q alpha must be in K because K is degree 2 extension of Q it is not equal to Q, so you can 

choose alpha. So, that I should have said first. 

So, there is an alpha in K mod in Q, so K is equal to Q alpha. Now, let f be the irreducible 

polynomial of alpha over Q. Remember it must be a degree to polynomial because it is a degree 

to extension K is a degree 2 extension. So, alpha has degree 2, so this is the irreducible 

polynomial. So, suppose alpha and beta are roots of f a priori in c or in some large field. So, we 

know then alpha plus beta is equal to b, this implies beta is minus, b. So, alpha plus beta is minus 

b i think, because that is the negative. 

So, minus b minus alpha. So, this I claim is in K because b is in c, remember b, c are in Q, I 

should say Q, alpha is Q, K. So, b, c are in k, alpha is in K, so this is in K. That means, K must 

be the splitting field of f over K. So, this implies K is normal over F. So that much is clear, 

because it is a splitting field so it is normal. So, why is a Galois group Z mod 2 Z because here 

the point is alpha and beta. So, you have alpha and beta distinct that is because, this is because f 

is irreducible. 

So, f is irreducible so if alpha and beta are and f is equal to X minus alpha times X minus beta. 

So, also, so X is irreducible, so you have X minus alpha times X minus beta is f and this is here, 

if alpha is equal to beta that means that, so one has to think about this a little bit, but if you have 

it is characteristic 0 is important here. So, let me just, so here an irreducible polynomial cannot 

have distinct, repeated roots, so that, so this is something that maybe you have looked in ring 

theory courses in the past and we will anyway come back to this when we talk about separable 

polynomials. 

So, the point here is, a irreducible polynomial in K in Q X has distinct roots in any extension 

field wherever it has roots it roots must be distinct. So, that means, that means, so if it is not 

irreducible, of course, it need not be because you can have X minus one whole square, it has 

repeated roots, but it would not happen for irreducible polynomials. So, this is a fact which I will 

omit, I mean any explanation of this will omit for now, but we will come back to this later. 

So, that means sigma, so consider sigma from K to K sending alpha to beta. So, sigma is a K, is a 

Q automorphism of K because it is a splitting field. So, any map like this is an automorphism and 



sigma is different from identity because beta and alpha are different, alpha goes to alpha under 

identity. So, Galois group is in fact, so, the cardinality of the Galois group is 2 which is the 

degree of the extension. So, K over F is Galois. 

So, any degree to extension is Galois. So, remark exactly the same proof there will be no 

difference, we will work to show that if K over F is a degree to extension. So, any degree 2 

extension of characteristic 0 field is Galois. So, the same proof, the only place where degree 

characteristic 0 is used is here. So, provided its characteristic 0 in fact, more generally you can 

say this even in characteristic b and we will do that later, but for now, let me just end this 

problem with this remark. 

So, any degree to extension is normal which is nice. Whereas, you see that degree 3 extensions 

need not be Galois in general, even in characteristic 0. So, this is not Galois, degree 3 non 

Galois. So, next let us look at the following examples of 4. Let us look at, this is also something 

that we have repeatedly seen. So, this is omega is primitive third root of unity and cube root of 2, 

let us say is a cube root of 2, real cube root of 2. 

And this is degree 6, this is something that you can easily conclude by the tower. So, this is 3 

because X cube minus 2 is irreducible by Eisenstein, and one can argue that this must be 2 

because omega satisfies a degree 2 polynomial over Q. And it cannot be so, it is at least at most 

2, it cannot be one because this is real field. So, this is 2. So, this is 6. So, now the question that 

we want to answer is, what is the Galois group whether it is Galois and whether it is normal. 

So, immediately we can conclude that we know in fact that K is the splitting field of X cube 

minus 2 over cube, so K over Q is normal, that is all right not. It is a splitting field because it 

splits X cube minus 2 splits completely over this and it is generated by the root, so it is normal. 

Remember roots of this polynomial are, so all the, all of them are in K and if remove any of them 

you do not get K you get something smaller. So, K is the splitting field. 

So, now, let me address the question of what is the Galois group and what is the, the Galois 

extension or whether it is a Galois extension. So, actually I forgot to make a remark here. So, 

remark here is, this degree to extension, any degree to extension of fields is normal. See up to 



normality, we have not invoked anything about characteristics 0 or not. So, any degree to 

extension of fields is normal, but need not, need not be Galois. 

So, this will give us an opportunity to construct an example of a normal but not Galois extension. 

So, by suitably taking a degree to extension, which is not Galois. So that was the remark about 

this. Let us continue now. So, I want to now understand what the Galois group is. So, now, let 

me invoke our standard mantra about how to construct field homomorphisms. So, possible 

images of cube root of 2 are cube root of 2, cube root of 2 mega.  

So, there are 3 choices. Remember, all of them are in K. That is part of the fact that it is normal. 

So, and possible images of omega are, omega and omega square because those are the only roots 

of its irreducible polynomial, which is X square plus X plus 1, this is the irreducible polynomial 

of omega over Q So, omega and omega squared are the possibilities.  

Now, one more fact I will repeat now, which maybe I have not emphasized enough is, it is well, 

and good to say that images of an element are its conjugates only possible images of elements, 

algebraic elements are its conjugate, so you have to take its irreducible polynomial. And look at 

the other roots of the irreducible polynomial, but more is true actually, you can construct a 

homomorphism by sending an element to its conjugate. 

So not only is looking at conjugates limits your constraints, but every possibility of an element, 

its conjugate will give you a homomorphism. So, you can construct a homomorphism from K to 

K. So in other words, what I am saying is that there exist a homomorphism from K to K, for 

every choice of images for of omega and cube root of 2. This is a stronger statement, I am saying 

that first step is to limit the possibilities of images for omega, which are only 2 and images of 

cube root of 2 which are 3.  

So, there are 3 choices for cube root of 2 at most 3, at most 2 choices for omega. But now, I am 

saying an additional statement, which is a stronger statement, you take any choice for example, 

take omega to omega cube root of 2 to cube root of 2 omega, you can construct a homomorphism 

that way, you can to take omega to any of these 2 and cube root of 2 to any of these 3 hand you 

can construct a homomorphism that way. This is a consequence of extension theorems, that we 

did in an earlier video. 



Very briefly, the point is, you can take cube root of 2 and any other image any other possibility, 

any other conjugate, you can construct a map because these are both isomorphic to cube root of 

Q X modulo x cubed minus 2, this is where the conjugates, conjugate is important, because they 

have the same irreducible polynomial. So, you can construct this and then extension theorem can 

be invoked to extend it. So, you can put in this place, can put any conjugate here. 

So, this later part is extension theorems. So, first step is to construct Q cube root of 2 to Q beta, 

where beta is any of these 3 elements or more generally, for any alpha, you can take any beta 

conjugate and then you extend by extension theorems, so all this song and dance says that there 

are 6 choices. In fact, let me say automorphisms because omega can go to one of the 2 

possibilities and there are independent possibilities cube root of 2 can go to one of the 3 and you 

can choose them independently. 

So, the 3 times 2 6 things and there are only 6 because you take any automorphism of K to K and 

look at where cube root of 2 goes, it goes to one of these 3, and when you look at where omega 

goes, it goes to one of these 2, so it must be one of the 6 that we have listed here. And remember 

once you determine the image of cube root of 2 and omega, the entire automorphism is fixed 

because K is spanned by these 2 as polynomials with coefficients in cube. 
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So, that much says that there are 6 homomorphisms that means, the Galois group has ordered six 

which is, which is also the degree of the extension this implies K over Q is Galois. So, this 

implies that K over Q is Galois, very good. So, this shows that this is a Galois extension. So, it is 

a normal extension by the general theorem to be proved later, that in characteristic 0 normal and 

Galois same, because it is normal that we already know. We already know it is Galois but we are 

trying to prove this directly. 

So finally, what is the Galois group, so often this is the last thing because you can determine 

Galois extension or not before this. So, now let us use some group theory there are only 2 groups 

of order 6. When I say a statement like this, or I always mean up to isomorphism. What are they, 



they are Z mod 6Z the cyclic group of order 6 and S3 the symmetric group of order 3. So now 

which of them is this Galois group, I claim that it is this and not this. 

So why is that, so for this, I am going to exhibit 2 particular elements of the Galois group and 

show that they do not commute in which case it cannot be a billion, so it cannot be that. So, 

sigma is this choice that I take, cube root of 2 goes to cube root of 2 omega and omega goes to 

omega. And tau, remember, to determine automorphism of K, all you need to specify is the 

image of cube root of 2 and omega. So, sigma has this property tau sends cube root of 2 2 cube 

root of 2, it fixes cube root of 2 and it sends omega 2 omega square. 

So now what is, so you can check later that this is order 3 element, this is order 2 element 

because if you do sigma square it will not be identity. However, if you do sigma cube, it will get 

identity. Similarly, tau square is identity, tau is not identity. So, these are both exercises for you. 

So, I would not do that. What I will now want to show that is sigma tau is not equal to sigma tau 

sigma. What does sigma tau do 2 cube root of 2, sigma tau sends cube root of 2, first see where 

tau sends s cube root of 2 to, it sends cube root of 2 to cube root of 2. 

Then what does sigma do, sigma sends it to cube root of 2 times omega. Now what does tau do 

to omega, it sends it to omega square, sigma sends omega to omega, so omega square omega 

square. Whereas tau sigma goes to, first you apply sigma. So that means you go to 3 root cube 

root of 2 times omega. And now tau, sends cube root of 2 cube root of 2, but omega 2 omega 

square, so that will go to omega square times cube root of 2.  

Already, you see that they are distinct. Just to finish it, let us see where omega goes under sigma, 

under sigma omega goes to omega, but under tower omega goes to omega square. So, omega is 

the same image, but these are not equal. So, sigma tau is not equal to tau sigma. And this implies 

Galois group of K over Q is not a abelian. So, it cannot be the abelian group of order 6. So that 

means Galois group is Z mod 6Z. So that completes the analysis of this particular extension.  

That is the fourth one, let me do one more. Let us do Q adjoint fourth root of 2 over Q. So, this is 

K, this is F. So, this is the degree 4 extension. So now, immediately, you can see that it is not 

normal. So you can take f to be X power 4 minus 2 X power 4 minus 2 has a root, but not all 



roots because what are the roots of this, these are fourth root of 2 plus minus and plus minus 

fourth root of 2 times i, these are the roots. So not normal.  

What about Galois, so it is also not Galois as we show, because Galois group of K over Q, let me 

sort of run through this quickly, I claim is isomorphic to Z mod 2 Z because what are the 

possible images of fourth root of 2. So, a priori in the complex numbers, it can be fourth root of 2 

minus fourth root of 2, fourth root of 2 i or minus fourth root of 2. But in k, because we are only 

interested in maps from K to K which fix Q.  

Are fourth root of 2 and minus fourth root of 2, so there are 2 of them. So, that means there are 

only 2 homomorphisms; one is identity, which sends fourth root of 2 to fourth root of 2, the other 

is non identity, which sends fourth root of 2 to minus fourth root of 2. So, here there are 2 

possibilities. So, there is only one group of order 2, namely the cyclic group of order 2.  

So that means, the field Extension has degree 4, but this is strictly more than the, the degree of 

the, the order of the Galois group which is 2. So, this implies K over F is not Galois, so this is not 

Galois and we have also discussed the Galois group. 
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But just let us for fun, what is determined what is the fixed field of the Galois group. See, we 

know that K colon, K colon K power Galois, Q is equal to cardinality of Galois, K over Q, which 

is 2. So, these are all things that I have recalled, I have done in the past. So, this is true, because 

this is not Z mod 2 Z. So, this is going to be a degree 2 extension of here. And that will in turn be 

a degree 2 extension of Q, because this is degree 4. 

But what is this, if you think about this, what are fixed by both this and this in fact, what is fixed 

by sigma is root 2. So root 2, so root 2 is fixed by 1 and sigma. See because root 2 must go to 

under sigma root 2 is fourth root of 2 whole square. So, sigma root 2 is sigma fourth root of 2 

whole square which is minus fourth root of 2 whole square which is root. So, that is the proof. 

So, sigma is fixed. So, that means, Q root 2 

So, of course, root 2 belongs to this now, I should have said first. Q root 2 is contained in the 

fixed field, but Q root 2 is a degree 2 extension. So, that means Q root 2 is equal to K power 

Galois. So, I went out this fast but I hope you understood the argument here. So, this shows that 

you have, in there is a first example where the extension fails to be Galois and the fixed field is 

in fact strictly in intermediate between the 2 fields we started with. 

So, it is actually not 1 here, not 1 here. So, I have one more example that I want to do, but let me 

stop the video here. We have already spent a lot of time on this. And then in the next video, I will 

do some more problems. Thank you. 


