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Welcome back. In the last two videos, we proved two important theorems about fixed fields and 

now we are ready to start defining Galois extensions and then study them in detail. So, just to 

quickly recall, we proved the first theorem, which says that if you have two fields and a bunch of 

distinct fields homomorphisms, then the degree of K over the fixed field of those is at least the 

number of homomorphisms.  

But if the fields are equal, so, namely K equal to L, and the homomorphisms that you are 

actually considering are actually automorphisms and there are N distinct ones and they form a 

group, then the degree of K over the fixed fields is exactly equal to N. So, in this video we are 

going to start defining Galois extensions.  
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So, first let me quickly recall something I did in a video earlier but I want to repeat it again. Let 

K over F be a field extension. Then, the symbol here Galois, G-A-L K over F represents all F 

automorphisms of, okay? This, we claimed earlier and I did not prove this, but this is a trivial 

exercise, is a group under composition. So, this is easy to prove. So, let me just say a couple of 

lines about this but not give you a rigorous proof.  

I am taking all F automorphisms right? So, identity is certainly an auto F automorphism and if 

sigma 1 and sigma 2 are F automorphisms, it is a triviality to check that their composition is also, 

is an F automorphism, right? That is all. So, you have inverse. By definition, an automorphism 

has an inverse; sigma 1 inverse is an F automorphism. That is all.  

So, it is not in general an abelian group. We will see that later because composition is not 

commutative and Galois groups can be non-commutative. So, this is called the Galois group of 

the extension. So, in the later part of this video I am going to give you more examples of this or 

explain the examples that I gave earlier.  
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But now let me prove a corollary to the previous theorem which is actually an important 

proposition for us. Let K be any field and let G be a finite group of automorphisms of K. So, G is 

a finite group of automorphisms of K. Let F be the fixed field of, of G. So, these are the elements 

that are fixed by all the elements of G. Then, G happens to be the Galois group of K over I. So, 

this is a trivial statement. We will explain this in a minute. So, what we know is that we know 

from theorem II of the previous video, theorem II about the fixed fields.  

Since this has the K colon F is carnality of G, right? This is exactly say G, say it is denoted by N. 

If you have a field, theorem II, remember, is exactly this. If you have a field and a distinct set of 

automorphisms, then the degree of K over the fixed field is exactly N. So, I am denoting by N 



the carnality or order of G and this is equal to that. Now, also, clearly, this is just a 

straightforward statement, G is contained in the Galois group of K over F.  

This is because, what is the Galois group of K over F? It is all F automorphisms of K. Galois 

group consists of all F automorphisms of K but any sigma in G fixes F, by definition because F is 

the fixed field, fixes, let me say, every element of F, that is, sigma A of, equals A for all A and F. 

So, sigma is in F automorphism. Simple, right? Galois K over F consists of all F automorphisms 

of K. G consists of a collection of automorphisms whose fixed field is F.  

So, sigma of A is equal to A for all A and F which is to say, sigma is an F map. This is what I 

defined way back in the course. You have an extension and F automorphism is something which 

fixes F pointwise. So, sigma FA is equal to A for all A and F means sigma is an F automorphism. 

So, sigma is in the Galois group. So, the proof of this inclusion is given here So, G is certainly 

contained in the Galois group of K over F. We need to show the other inclusions.  

So, suppose it is not equal. Suppose sigma is in, and let us say sigma is not in G. So, suppose this 

is a strict inclusion. If possible, let it be strict inclusion in which case we can pick a sigma which 

is in the Galois group but not in G. And let S equal G union sigma. I have been using the letter S 

to denote collections of maps which do not form a group. So, G is a group but G union sigma is 

of course not a group because you are just adding one element.  

Most of the time it will not be a group, so, let us call it S. Now what we know is that N plus 1 

which is the order of S, cardinality of S, is less than or equal to K colon K power S. This is by 

theorem I. If you take any collection of homomorphisms which do not necessarily form a group, 

then you can apply only theorem 1, which says that degree over fixed field is at least as much as 

the number of homomorphisms, so in this case N plus 1. 

But K colon KS, where is KS? So, maybe I should draw the picture here. So, K is here because 

sigma, so maybe I will squeeze in the argument here, sigma is in Galois K over F. So, sigma A is 

equal to A for all A and F. So, sigma that means this implies A is in the fixed field of because A 

is anyway fixed by everything in G right? So, A is fixed by, by definition because A is in F and F 

is the fixed field.  



But A is also fixed by sigma by this statement because sigma is in Galois K over F. By 

definition, Galois K over F is all F automorphisms, of K, so, sigma being in Galois K over F; that 

way. So, that this is a very simple point but this is crucial to the whole theory. Sigma is in Galois 

K over F. So, sigma, and F is the, sorry, sigma is in Galois K over F, Galois K over F is the 

collection of F automorphisms of K, so, if A is in F, sigma fixes A.  

So, A is in, A is fixed by sigma as well as everything in G. So, A is fixed by G everything in G 

union sigma, that means A is in KS. That means KS is a super field of F. So, that means F is 

contained in KS. So, this is the tower, K contains KS, KS contains F. Once F is contained in KS, 

K colon KS is greater than or equal to K colon S. So, because this is a product of this times this 

times this, so, K colon F is  at least as much as K colon KS.  

But, K colon KF, K colon F we already know is equal to N. So, this is a contradiction. So, you 

will see where will see where we will use this theorem later on but this is an contradiction. You 

have N plus 1 is strictly or N plus 1 is greater than or less than equal to N, so that is a 

contradiction. That means G equals Galois, the contradiction is to the fact that there is something 

in sigma that is, there are some sigma in Galois K over F that is not in G.  

So, that must be the, that must be an equality. The proposition is proved. So, let me write one 

corollary to this. You may not see why the corollary is important now but as you learn more you 

will see this is a statement that you will use often. Let K be a field. There cannot be two different 

groups, let us say, finite groups of automorphisms of K with the same fixed field.  
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That is because if you have two different, if you have group G, that group G determines the fixed 

field in this way. So, they, if you have a group G1 and G2 have the same fixed field, G1 must be 

equal to the Galois group of K over the fixed field which is G. So, in other words if you have G1 

and G2 have same fixed field, so, the proof. 

Then G1 equals Galois group of K over F by the corollary, by the proposition, which is also 

same as G, G2. So, that tells me that there cannot be two different groups which have the same 

fixed field. So, now let me give you the most important definition of the whole course and then 

we will do some examples in this video to understand this definition.  



So, let K over F be a finite extensions of fields. So, this is the definition of Galois extensions. So, 

this is the crucial statement for us in the whole course. Let K over B be a finite extension of 

fields. Then, K over F is called in Galois extension, and Galois extension if F is the fixed field of 

Galois K over F. This definition will take some and getting use to but let me give a remark and a 

few examples to, to motivate this definition and give some examples.  

So, note that, first note that F is always contained in, this came up in the previous proof, always 

contained in the fixed field of Galois K over F. Why is this? The reason is if sigma belongs to 

Galois K over F and A belongs to F, then sigma A is equal to A by definition because sigma is an 

F automorphism of K. Galois K over F consists of things which are automorphisms of K that fix 

F point-wise. So, sigma in Galois K over F and A in F means sigma A is in A. 

That means A is in the fixed field of this. So, A is fixed by all the Galois group elements. So, A 

is in the Galois fixed field, so, hence F itself is contained in. So, emphasizing this, this always 

holds. So, we always have this tower for any given finite extension, so, this always holds. The 

extension is Galois if the bottom part is inequality. The extension is Galois if the bottom part is 

an equality. The extension is Galois if K Galois K over F is equal to F. 
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This may not always happen. This does not always happen. So, Galois extensions are those 

extensions where there is an equality. Let us say equality holds if K over F is Galois. So, let me 

quickly do a few examples and then we will stop in this video, So, examples. So, the first 

example, let us take K equal to Q adjoined I and F to be Q is K over F is Galois. So, what is the 

Galois group? So, in all these cases you have to first find out the Galois group.  

So, let us take G to B, 1, sigma where 1 is of course the identity map and sigma is the map from 

K to K which sends I to minus I. Remember any automorphisms of K must send I to a conjugate 

of I meaning another root x square plus 1 which is the reducible (())(16:56) of I. So, only roots of 

x square plus 1 are I and minus I. So, sigma 1, sigma sends I to I, one sends I to minus I.  



Sorry, 1 sends I to I, sigma sends I to minus I. Then what is KG? So, we have a few statements 

here. So, using the proposition that I did earlier, KG, so, without using that let us say what is KG. 

KG is between, K is here, KG is here, and Q is, F is here. F is Q, this is QI. KG remember is 

always going to contain F or actually let me not use that remark. I am just saying that both 1 and 

sigma fix every rational number. In fact Q is the prime field.  

So, this is something we have. Now, this proposition here, G is a finite group of automorphisms 

in the, our example, there are two, and F is the fixed field. In this case KG is the fixed field. So, 

K, G is equal to Galois group of, okay, so, actually, let me not use that. By theorem II, what is 

the degree of this? So, this is 2. That means this is inequality, because this whole thing is 2, so, 

this is already 2.  

That means KG is equal to Q. So, KG is equal to Q. Now, let us apply the proposition that I 

proved at the beginning of today's video. So, if you have a field, a finite group of 

automorphisms, F is a fixed field, then G is the Galois group of, by proposition that I proved 

today. G is the Galois group of K over KG. Remember proposition as always proving that, so, 

remember proposition by this version. Remember this by, as what we have is Galois group.  

What do I mean by this? So, G is the Galois group of K over KG. So, it is a good way to 

remember this. So, if K is any field G is an arbitrary group of finite (automorph), finite, arbitrary 

finite group of automorphisms of K and F is the fixed field. So, it is useful to write K power G so 

that you keep track of that. Then G is Galois group of K over F.  

So, that means G is Galois group of K over KG. In this case, G is Galois group of K over KG but 

KG is Q, so G is the Galois group of Q adjoined I which is K over Q. So, G is the Galois group 

of Galois group of QI over Q and its fixed field is Q. Hence Q is K power Galois K over Q. This 

is exactly what Galois extension is. So, again remember this as K over F is Galois if F is equal to 

the fixed field of Galois group of K over F.  

So, remember this as K over F is Galois if F is the fixed field of the Galois group. Remember 

fixed field is, fixed fields are always represented by K power that group. So, F is equal to K 

power Galois K over F implies K over F is Galois. Here Q is the fixed field of Galois K power 



Q. Q equals K power Galois K over Q and hence, you can also directly prove that Galois group 

of QI or Q is actually just G because there are only two automorphisms, you think about this.  

So, you can prove this directly. Directly also by just arguing that any automorphisms must send I 

to a conjugate of I and there are only two possibilities. But please there is a subtle thing here 

involved. 
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So, please carefully think about this and make sure that you understand the every point that I am 

using. What about K Q adjoined cube root of 2? So, here there is only one automorphism. 



Because cube root of 2 must go to, cube root of 2, omega cube root of 2 as we discussed this 

many times, or this, or this, but only this is available in K.  

These are not in K. So, the only automorphism is the identity automorphism. So, I am going to 

go over this fast but this is hopefully clear to you. The Galois group of K over F. So, F is Q. So, 

K is Q adjoined root 2, Q adjoined cube root of 2, F is Q. Galois group is exactly 1. So, what is 

the fixed field of the Galois group.  

Fixed field of identity element is K and it is not equal to F. So, in this case Q adjoined cube root 

of 2 or Q is not Galois. So, you see where, this is an example where this is not an equality. In 

fact, the fixed field happens to be all of K. So, this is not an equality. As we will see more 

examples later, the fixed field could be something in between these two.  
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So, one more example I want to give. This is the third example. So, here I take Q adjoined root 2, 

I as K and K and F as Q. So, here one can show, can show this, essentially we have shown this 

earlier following the notation that I used, so notation that I used in an earlier video where we 

looked at 4 automorphisms of K. 

One is identity automorphism; the other one sends root 2 to root 2 I to minus I. One sends root 2 

to minus root 2 I to I; the third one sends root 2 to minus root 2 I to minus I; and the third one is 

actually equal to the product of sigma 1 and sigma 2. So, here if you think about this, the index 

of K, I mean you can directly prove.  



And we did directly say this, directly prove that K power Galois K over F is actually F. This we 

have checked by explicitly figuring out which are fixed elements. But also we can argue like this 

using the theorems that we have proved.  

So, we have K. K power Galois K over Q and Q. The cardinality of the Galois group here is 4. 

So, that is by the theorem II, this is 4, because K colon, so, theorem II can be remembered as K 

colon K power G is cardinality of G. This is a short way to remember theorem II. K colon K 

power G is cardinality of G. 

So, this is the cardinality of G is 4, so, this is 4 but so, is this. So, this must be 1. So, this implies 

K power Galois K over Q is Q and hence K over Q is Galois. So, just to complete this circle of 

ideas, another way to prove G that I defined here, that this is the exactly the Galois group. Again, 

you can argue this by showing that there is not much choice for I and root 2 but there is another 

way to prove that this is equality of Galois groups using our results.  

So, call this group G. So call this group G, then, and let us look at K power G because Q is the 

prime field, Q is fixed by G obviously, so, Q is contained in KG. So, we have this tower. By 

theorem II, this is 4. So, by theorem 2, this is 4 and this is 1. So, theorem II implies KG equals Q 

but by the proposition that we proved today, K, G equals Galois K over  K power G.  

Today's proposition implies G equals, G is now this, is Galois K (pow) K over K power G. This 

means this is Galois K over Q because K power G is Q, so, G is Galois, remember proposition 

can be remembered like this, G equals Galois K over KG but KG equals Q by (prop) theorem II, 

so, G is equal to Galois K over Q. 
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So, these are various strands of ideas that we are learning in this course. And now I will not, I 

will write this one for now but we will discuss this later is the fourth example. If you take the 

field extension, finite fields FP power R over FP, so, P is prime of course and R is a positive 

integer. This is Galois. This is a Galois extension.  

So, I want to stop here because we have done enough but we will do this later by, I will, I will 

start next video with some problems, and in that video we will discuss this in more detail. So, 

just I wanted to write this however because I want to give examples of Galois extensions and 

also an example which is something not Galois. So, let me stop this video.  

In the last three, four videos, I have thrown a lot of materials at you. So, please carefully follow 

this and I have sort of indicated how to remember these things in a convenient fashion. So, make 

sure that you digest all these things carefully. So, theorem II is this. Theorem II remember is the 

statement that K colon K power G is cardinality of G. That is the, how you remember theorem II. 

Theorem I is K colon K power S. So, this is, here S is not a group. So, S is any collection of 

homomorphisms. So, K colon K power S is at least cardinality of S; K colon K power G is 

cardinality of G. Here, G is a group and then we defined a finite (exten), a finite extension is 

Galois if F is equal to K power Galois K over F.  

So, using these short forms, we prove various facts here. Please carefully think about all these 

things because it is important to digest these very well before we proceed to the next concepts. 



Let me stop this video, in the next video will do some problems to make sure that we understand 

all these concepts. Thank you.  


