Introduction to Galois Theory
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Department of Mathematics
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Lecture No 14
Galois Extensions, Galois Groups
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Welcome back. In the last two videos, we proved two important theorems about fixed fields and
now we are ready to start defining Galois extensions and then study them in detail. So, just to
quickly recall, we proved the first theorem, which says that if you have two fields and a bunch of
distinct fields homomorphisms, then the degree of K over the fixed field of those is at least the

number of homomorphisms.

But if the fields are equal, so, namely K equal to L, and the homomorphisms that you are
actually considering are actually automorphisms and there are N distinct ones and they form a
group, then the degree of K over the fixed fields is exactly equal to N. So, in this video we are

going to start defining Galois extensions.
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So, first let me quickly recall something I did in a video earlier but | want to repeat it again. Let
K over F be a field extension. Then, the symbol here Galois, G-A-L K over F represents all F
automorphisms of, okay? This, we claimed earlier and | did not prove this, but this is a trivial
exercise, is a group under composition. So, this is easy to prove. So, let me just say a couple of

lines about this but not give you a rigorous proof.

| am taking all F automorphisms right? So, identity is certainly an auto F automorphism and if
sigma 1 and sigma 2 are F automorphismes, it is a triviality to check that their composition is also,
is an F automorphism, right? That is all. So, you have inverse. By definition, an automorphism

has an inverse; sigma 1 inverse is an F automorphism. That is all.

So, it is not in general an abelian group. We will see that later because composition is not
commutative and Galois groups can be non-commutative. So, this is called the Galois group of
the extension. So, in the later part of this video | am going to give you more examples of this or

explain the examples that | gave earlier.
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But now let me prove a corollary to the previous theorem which is actually an important
proposition for us. Let K be any field and let G be a finite group of automorphisms of K. So, G is
a finite group of automorphisms of K. Let F be the fixed field of, of G. So, these are the elements
that are fixed by all the elements of G. Then, G happens to be the Galois group of K over 1. So,
this is a trivial statement. We will explain this in a minute. So, what we know is that we know

from theorem Il of the previous video, theorem Il about the fixed fields.

Since this has the K colon F is carnality of G, right? This is exactly say G, say it is denoted by N.
If you have a field, theorem |1, remember, is exactly this. If you have a field and a distinct set of

automorphisms, then the degree of K over the fixed field is exactly N. So, | am denoting by N



the carnality or order of G and this is equal to that. Now, also, clearly, this is just a
straightforward statement, G is contained in the Galois group of K over F.

This is because, what is the Galois group of K over F? It is all F automorphisms of K. Galois
group consists of all F automorphisms of K but any sigma in G fixes F, by definition because F is
the fixed field, fixes, let me say, every element of F, that is, sigma A of, equals A for all A and F.
So, sigma is in F automorphism. Simple, right? Galois K over F consists of all F automorphisms
of K. G consists of a collection of automorphisms whose fixed field is F.

So, sigma of A is equal to A for all A and F which is to say, sigma is an F map. This is what |
defined way back in the course. You have an extension and F automorphism is something which
fixes F pointwise. So, sigma FA is equal to A for all A and F means sigma is an F automorphism.
So, sigma is in the Galois group. So, the proof of this inclusion is given here So, G is certainly

contained in the Galois group of K over F. We need to show the other inclusions.

So, suppose it is not equal. Suppose sigma is in, and let us say sigma is not in G. So, suppose this
is a strict inclusion. If possible, let it be strict inclusion in which case we can pick a sigma which
is in the Galois group but not in G. And let S equal G union sigma. | have been using the letter S
to denote collections of maps which do not form a group. So, G is a group but G union sigma is

of course not a group because you are just adding one element.

Most of the time it will not be a group, so, let us call it S. Now what we know is that N plus 1
which is the order of S, cardinality of S, is less than or equal to K colon K power S. This is by
theorem 1. If you take any collection of homomorphisms which do not necessarily form a group,
then you can apply only theorem 1, which says that degree over fixed field is at least as much as

the number of homomorphisms, so in this case N plus 1.

But K colon KS, where is KS? So, maybe | should draw the picture here. So, K is here because
sigma, so maybe | will squeeze in the argument here, sigma is in Galois K over F. So, sigma A is
equal to A for all A and F. So, sigma that means this implies A is in the fixed field of because A
is anyway fixed by everything in G right? So, A is fixed by, by definition because A is in F and F
is the fixed field.



But A is also fixed by sigma by this statement because sigma is in Galois K over F. By
definition, Galois K over F is all F automorphisms, of K, so, sigma being in Galois K over F; that
way. So, that this is a very simple point but this is crucial to the whole theory. Sigma is in Galois
K over F. So, sigma, and F is the, sorry, sigma is in Galois K over F, Galois K over F is the
collection of F automorphisms of K, so, if A'is in F, sigma fixes A.

So, Ais in, A'is fixed by sigma as well as everything in G. So, A is fixed by G everything in G
union sigma, that means A is in KS. That means KS is a super field of F. So, that means F is
contained in KS. So, this is the tower, K contains KS, KS contains F. Once F is contained in KS,
K colon KS is greater than or equal to K colon S. So, because this is a product of this times this
times this, so, K colon F is at least as much as K colon KS.

But, K colon KF, K colon F we already know is equal to N. So, this is a contradiction. So, you
will see where will see where we will use this theorem later on but this is an contradiction. You
have N plus 1 is strictly or N plus 1 is greater than or less than equal to N, so that is a
contradiction. That means G equals Galois, the contradiction is to the fact that there is something

in sigma that is, there are some sigma in Galois K over F that is not in G.

So, that must be the, that must be an equality. The proposition is proved. So, let me write one
corollary to this. You may not see why the corollary is important now but as you learn more you
will see this is a statement that you will use often. Let K be a field. There cannot be two different

groups, let us say, finite groups of automorphisms of K with the same fixed field.
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That is because if you have two different, if you have group G, that group G determines the fixed
field in this way. So, they, if you have a group G1 and G2 have the same fixed field, G1 must be
equal to the Galois group of K over the fixed field which is G. So, in other words if you have G1

and G2 have same fixed field, so, the proof.

Then G1 equals Galois group of K over F by the corollary, by the proposition, which is also
same as G, G2. So, that tells me that there cannot be two different groups which have the same
fixed field. So, now let me give you the most important definition of the whole course and then

we will do some examples in this video to understand this definition.



So, let K over F be a finite extensions of fields. So, this is the definition of Galois extensions. So,
this is the crucial statement for us in the whole course. Let K over B be a finite extension of
fields. Then, K over F is called in Galois extension, and Galois extension if F is the fixed field of
Galois K over F. This definition will take some and getting use to but let me give a remark and a

few examples to, to motivate this definition and give some examples.

So, note that, first note that F is always contained in, this came up in the previous proof, always
contained in the fixed field of Galois K over F. Why is this? The reason is if sigma belongs to
Galois K over F and A belongs to F, then sigma A is equal to A by definition because sigma is an
F automorphism of K. Galois K over F consists of things which are automorphisms of K that fix
F point-wise. So, sigma in Galois K over F and A in F means sigma A is in A.

That means A is in the fixed field of this. So, A is fixed by all the Galois group elements. So, A
is in the Galois fixed field, so, hence F itself is contained in. So, emphasizing this, this always
holds. So, we always have this tower for any given finite extension, so, this always holds. The
extension is Galois if the bottom part is inequality. The extension is Galois if the bottom part is

an equality. The extension is Galois if K Galois K over F is equal to F.
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This may not always happen. This does not always happen. So, Galois extensions are those
extensions where there is an equality. Let us say equality holds if K over F is Galois. So, let me
quickly do a few examples and then we will stop in this video, So, examples. So, the first
example, let us take K equal to Q adjoined | and F to be Q is K over F is Galois. So, what is the

Galois group? So, in all these cases you have to first find out the Galois group.

So, let us take G to B, 1, sigma where 1 is of course the identity map and sigma is the map from
K to K which sends I to minus I. Remember any automorphisms of K must send | to a conjugate
of I meaning another root x square plus 1 which is the reducible (())(16:56) of I. So, only roots of

x square plus 1 are I and minus I. So, sigma 1, sigma sends | to I, one sends | to minus 1.



Sorry, 1 sends | to I, sigma sends | to minus I. Then what is KG? So, we have a few statements
here. So, using the proposition that I did earlier, KG, so, without using that let us say what is KG.
KG is between, K is here, KG is here, and Q is, F is here. F is Q, this is Ql. KG remember is
always going to contain F or actually let me not use that remark. I am just saying that both 1 and
sigma fix every rational number. In fact Q is the prime field.

So, this is something we have. Now, this proposition here, G is a finite group of automorphisms
in the, our example, there are two, and F is the fixed field. In this case KG is the fixed field. So,
K, G is equal to Galois group of, okay, so, actually, let me not use that. By theorem II, what is
the degree of this? So, this is 2. That means this is inequality, because this whole thing is 2, so,
this is already 2.

That means KG is equal to Q. So, KG is equal to Q. Now, let us apply the proposition that |
proved at the beginning of today's video. So, if you have a field, a finite group of
automorphisms, F is a fixed field, then G is the Galois group of, by proposition that | proved
today. G is the Galois group of K over KG. Remember proposition as always proving that, so,

remember proposition by this version. Remember this by, as what we have is Galois group.

What do | mean by this? So, G is the Galois group of K over KG. So, it is a good way to
remember this. So, if K is any field G is an arbitrary group of finite (automorph), finite, arbitrary
finite group of automorphisms of K and F is the fixed field. So, it is useful to write K power G so

that you keep track of that. Then G is Galois group of K over F.

So, that means G is Galois group of K over KG. In this case, G is Galois group of K over KG but
KG is Q, so G is the Galois group of Q adjoined I which is K over Q. So, G is the Galois group
of Galois group of QI over Q and its fixed field is Q. Hence Q is K power Galois K over Q. This
is exactly what Galois extension is. So, again remember this as K over F is Galois if F is equal to

the fixed field of Galois group of K over F.

So, remember this as K over F is Galois if F is the fixed field of the Galois group. Remember
fixed field is, fixed fields are always represented by K power that group. So, F is equal to K

power Galois K over F implies K over F is Galois. Here Q is the fixed field of Galois K power



Q. Q equals K power Galois K over Q and hence, you can also directly prove that Galois group
of QI or Q is actually just G because there are only two automorphisms, you think about this.

So, you can prove this directly. Directly also by just arguing that any automorphisms must send |
to a conjugate of | and there are only two possibilities. But please there is a subtle thing here

involved.
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So, please carefully think about this and make sure that you understand the every point that | am

using. What about K Q adjoined cube root of 2? So, here there is only one automorphism.



Because cube root of 2 must go to, cube root of 2, omega cube root of 2 as we discussed this

many times, or this, or this, but only this is available in K.

These are not in K. So, the only automorphism is the identity automorphism. So, I am going to
go over this fast but this is hopefully clear to you. The Galois group of K over F. So, F is Q. So,
K is Q adjoined root 2, Q adjoined cube root of 2, F is Q. Galois group is exactly 1. So, what is
the fixed field of the Galois group.

Fixed field of identity element is K and it is not equal to F. So, in this case Q adjoined cube root
of 2 or Q is not Galois. So, you see where, this is an example where this is not an equality. In
fact, the fixed field happens to be all of K. So, this is not an equality. As we will see more

examples later, the fixed field could be something in between these two.
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So, one more example | want to give. This is the third example. So, here | take Q adjoined root 2,
| as Kand K and F as Q. So, here one can show, can show this, essentially we have shown this
earlier following the notation that | used, so notation that | used in an earlier video where we
looked at 4 automorphisms of K.

One is identity automorphism; the other one sends root 2 to root 2 | to minus 1. One sends root 2
to minus root 2 | to I; the third one sends root 2 to minus root 2 | to minus I; and the third one is

actually equal to the product of sigma 1 and sigma 2. So, here if you think about this, the index

of K, I mean you can directly prove.



And we did directly say this, directly prove that K power Galois K over F is actually F. This we
have checked by explicitly figuring out which are fixed elements. But also we can argue like this

using the theorems that we have proved.

So, we have K. K power Galois K over Q and Q. The cardinality of the Galois group here is 4.
So, that is by the theorem I, this is 4, because K colon, so, theorem Il can be remembered as K
colon K power G is cardinality of G. This is a short way to remember theorem Il. K colon K

power G is cardinality of G.

So, this is the cardinality of G is 4, so, this is 4 but so, is this. So, this must be 1. So, this implies
K power Galois K over Q is Q and hence K over Q is Galois. So, just to complete this circle of
ideas, another way to prove G that | defined here, that this is the exactly the Galois group. Again,
you can argue this by showing that there is not much choice for I and root 2 but there is another

way to prove that this is equality of Galois groups using our results.

So, call this group G. So call this group G, then, and let us look at K power G because Q is the
prime field, Q is fixed by G obviously, so, Q is contained in KG. So, we have this tower. By
theorem 11, this is 4. So, by theorem 2, this is 4 and this is 1. So, theorem Il implies KG equals Q
but by the proposition that we proved today, K, G equals Galois K over K power G.

Today's proposition implies G equals, G is now this, is Galois K (pow) K over K power G. This
means this is Galois K over Q because K power G is Q, so, G is Galois, remember proposition
can be remembered like this, G equals Galois K over KG but KG equals Q by (prop) theorem II,

so, G is equal to Galois K over Q.
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So, these are various strands of ideas that we are learning in this course. And now | will not, |
will write this one for now but we will discuss this later is the fourth example. If you take the
field extension, finite fields FP power R over FP, so, P is prime of course and R is a positive

integer. This is Galois. This is a Galois extension.

So, | want to stop here because we have done enough but we will do this later by, I will, I will
start next video with some problems, and in that video we will discuss this in more detail. So,
just | wanted to write this however because | want to give examples of Galois extensions and

also an example which is something not Galois. So, let me stop this video.

In the last three, four videos, | have thrown a lot of materials at you. So, please carefully follow
this and | have sort of indicated how to remember these things in a convenient fashion. So, make
sure that you digest all these things carefully. So, theorem Il is this. Theorem Il remember is the

statement that K colon K power G is cardinality of G. That is the, how you remember theorem II.

Theorem | is K colon K power S. So, this is, here S is not a group. So, S is any collection of
homomorphisms. So, K colon K power S is at least cardinality of S; K colon K power G is
cardinality of G. Here, G is a group and then we defined a finite (exten), a finite extension is

Galois if F is equal to K power Galois K over F.

So, using these short forms, we prove various facts here. Please carefully think about all these

things because it is important to digest these very well before we proceed to the next concepts.



Let me stop this video, in the next video will do some problems to make sure that we understand
all these concepts. Thank you.



