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There is an even simpler method to do that rather than doing all this laborious work, we could look at
this problem in another way and it is much more intuitive to look at this second way. So, let us see what
is the length of the path taken by the light in each of the media.

Another way: Length of two segments along which light travels√
(x∗ − xo)2 + (y∗ − yo)2)/

√
(x∗ − x1)2 + (y∗ − y1)2)

TotalT ime : T (y∗) =

√
(x∗ − xo)2 + (y∗ − yo)2)

Co
+

√
(x∗ − x1)2 + (y∗ − y1)2)

C1

So, total length divided by the velocity in each media is going to give me the total time that the light
particle takes from going from point A to point B.

So, now we have a function which is purely a one variable function and the one variable is y∗. So, now
to find the minimum time we have to differentiate the T with respect to y∗

dT

dy∗
=

y∗ − yo
Co
√

(x∗ − xo)2 + (y∗ − yo)2)
− y1 − y∗

C1

√
(x∗ − x1)2 + (y∗ − y1)2)

= 0

So, going back to our slide, next slide again, we see that the particular quantity here which I have circled
is nothing but the sin of the angle of incidence, sinφo. So, what we get? Well, of course, to find the
critical point we set this expression equal to 0 but this expression is nothing but the following expression

⇒ sinφo
Co

=
sinφ1
C1

Snell′s Law

Well, people who have done science in class 12th, they will immediately recognize that this is nothing
but the famous Snell’s law. So, in class 12th we are taught Snell’s law we are just given the expression
but we are not shown how we are, we get this expression. So, what this example shows that the time
taken by the light is such that it always follows the Snell’s law.
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So, the moral of the story is the following, what we have is that the minimum time taken by light particle,
the minimum time taken by the light particles is such that Snell’s law is satisfied. So, people with a
basic science background in high school, they all are familiar with Snell’s law but they do not know how
does it satisfy the time taken by the light particle. So, today in this lecture we have shown exactly that.

So, we can continue this discussion by looking at the various, we can extend this problem as to the path
followed by the light in different, different medias, not only just one media but maybe several medias.
So, we have media 1, let me call this as media 0, media 1, media 2, media 3 and what happens that in
each of this medias, let me call this angle of incidence as φo, φ1, φ2 and φ3.

So, in each of these mediums, so for multiple boundaries, the minimum will always be such that Snell’s
law is satisfied at each boundary. However, what we have seen is we have not exactly used the Euler-
Lagrange equations in its purest form. We have broken down the problems into simpler bits and applied
Euler-Lagrange equations in each of these bits wherever the solution is continuous, and continuously
differentiable up to second order.

So, which means, well although this problem was fairly simple, in general dealing with kinks or derivative
discontinuities is not very easy and in that case the Euler-Lagrange equations do not work, they do not
work because of the underlying assumption of having second order continuous partial derivatives.

So, in that case we have to use a special result known as the Weierstrass-Erdmann condition of broken
extremal which we will introduce in around the 10th lecture of this lecture discourse. So, we are going
to deal with broken extremals in detail but right now I have just introduced with an example. So finally,
we, let us now look at the fourth case of our special case of Euler-Lagrange.

(Refer Slide Time: 09:22)

The fourth case is the case of degenerate solution. So, here I have a functional

J(y) =

∫ x1

xo

A(x, y)y
′
+B(x, y)dx

Where A, B are smooth function of x and y, otherwise we would not be able to apply Euler-Lagrange

3

65



again.

If we apply Euler-Lagrange equations, we see that the equations reduces to the following

d

dx
A(x, y)−

[
y

′ ∂A

∂y
+
∂B

∂y

]
= 0

⇒ y
′ ∂A

∂y
+
∂A

∂y
−

[
y

′ ∂A

∂y
+
∂B

∂y

]
= 0

⇒ ∂A

∂y
=
∂B

∂y
⇔ Ax = By IV

So, in this case, my extremal will be such that IV satisfied. So, I will not get y explicitly as a function
of x, but I am going to get a relation which is satisfied by the extremal y. So there are two observations,
so we say that y is an extremal, in this case y is an extremal provided y satisfies IV

So, this is an implicit equation for y(x), well this is the case when y needs to satisfy the relation IV.
How about a case where this is trivially satisfied for all x and y? let me call this as case 4a where if this
holds then IV needs to be satisfied. We could also have another case.

(Refer Slide Time: 13:31)

We could have another case, let me call this as 4b where the boxed expression IV which is Ax = By is
satisfied for all x and y. So, which means that this particular expression is an identity as it is satisfied
for all x and y, then this is an identity which means that there is no restriction on y. We just cannot find
the extremal, however this particular set up guarantees the existence of another function φ, which is a
differentiable function. It guarantees the existence of another function which is a differentiable function.

Such that φy = A and φx = B. Why because, notice that if we were to take, assume this expression we
see that φyx = Ax = By = φxy So, if φ is differentiable then immediately this result is trivial, φxy = φyx.
The mix derivatives are equal.
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So, which means that if the boxed expression is an identity then there is another φ such that φ satisfies
this particular set of two relations and

f = Ay
′
+B = φyy

′
+ φx = d

dxφ

⇒ J(y) =

∫
fdx =

∫ (
d

dx
φ

)
dx =

∫ φ1

φo

dφ = φ(x1, y1)− φ(xo, yo)

So, notice that the particular integral is an exact differential and notice that this particular quantity
that we have found is independent of y(x). So, you just cannot find the extremal in this case because
regardless of y, the functional is always going to reduce to this constant which only depends on the
endpoints. So, now let us look at an example in this case.

(Refer Slide Time: 17:16)
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Example 5 Let f(x, y, y
′
) = (x2 + 3y2)y

′
+ 2xy

Solution: Ax = 2x,By = 2x ⇒ Ax = By = 2x

So, we see that this is an identity, So, which means that my functional described by this function f is
path independent functional and which means that it is exact, so all I need to do is to find the exact
differential φ, the exact differential φ is given by φy.

The exact differential is φy = A = x2 + 3y2 and φx = B = 2xy

φ(x, y) = x2y + y3 + g(x)⇒ φx = 2xy + g
′
(x) = B = 2xy ⇒ g(x) = C

⇒ φ(x, y) = x2y + y3 + C

(Refer Slide Time: 20:20)
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J =
∫ x1

xo
dφ = φ(x1, y1)− φ(xo, yo) = [x21y1 + y31 ]− [x2oyo + y3o ]

So, regardless of the function y, I am always going to get the value of the functional to be a constant
which depends only on the final and the initial points. So, finding the extremal in this case is a useless
exercise. So what I have done is the following, so let me rewrite this entire exercise in case 4 in the form
of a theorem. Let me state the result in the form of a theorem.

Theorem 3 Suppose the functional J J =
∫
fdx has extremals with continuous and smooth derivatives

upto second order (with fixed endpoints) , this will be the final result in our lecture series.

So, we are still looking at fixed endpoint problems. And such that the Euler-Lagrange equation reduces
to an identity, it reduces to an identity then what I have is that the integrand of the functional, the
integrand f must be linear in y

′
. And the value of the functional is independent of y.

So, what I have said in this result if the following, that whenever the Euler-Lagrange, this is the most
important part of the statement, whenever Euler-Lagrange reduces to an identity it necessarily going to
give us the case 4 that is the integrand will always be a linear function of y

′
.

If Euler-Lagrange is an identity if and only if with the necessary and sufficient condition will lead to a
case described by the case 4.

Proof : let us assume that the Euler-Lagrange equation is an identity.

(Refer Slide Time: 24:57)
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⇒ ∂f

∂y
− d

dx

∂f

∂y′ =
∂f

∂y
− ∂

∂x

∂f

∂y′ −
∂2f

∂y∂y′ −
∂2f

∂y′2
y

′′
= 0

Now, we are doing a problem in which f = f(x, y, y
′
), so the maximum derivative argument that f has is

only up to first order which means that the only term which contains the second derivative this falling
quantity and since we do not have any terms involving second derivative of y.

So what I am saying is the following, since y
′

appears only in the last term and f = f(x, y, y
′
) f which

means that there would not be an explicit appearance of any terms involving y
′′
So, which means that

∂2f

∂y′
2 y

′′
= 0

So, from here I can directly deduce that f(x, y, y
′
) is a linear function of y

′
. and further

∂f
∂y −

∂
∂x

∂f

∂y′
− ∂2f

∂y∂y′
− ∂2f

∂y′
2 y

′′
= 0 ⇒ Ax = By ∀ x ∈ [x0, x1], for all y in the set of second order

continuously differentiable functions satisfying the boundary condition.

So, the moral of the story is whenever we have the Euler-Lagrange equation being an identity, we always
have that the integrand is a linear function of y and that the Euler-Lagrange equation finally reduces to
this neat expression Ax = By .

So, thank you for listening. In the next lecture, I am going to talk about certain other topics related
to Euler-Lagrange, namely the invariance, the existence uniqueness and further generalization of Euler-
Lagrange equations. Thank you for listening. Thank you very much.
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