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So, good afternoon everyone. So, in today’s lecture which is the last lecture of our lecture series, we
are going to continue our discussion on the modelling of nano rod oscillators.

(Refer Slide Time: 0:29)

So, let me just continue our discussion from our previous lecture. So, in my first example I am going
to model a double walled carbon nanotube. So our goal is, to model an oscillatory double walled carbon
nanotubes. So the first example that I have today is, we are going to look at the interaction of a carbon
nanotube, let me draw the figure so we have a carbon nanotube it has a radius b, so it is a cylindrical
shell and suppose I am given a point P which is (δ, 0, 0) and P is at a distance of δ from the axis of the
cylinder and further, I assume that δ is less than B. So I want to model the interaction of this point, let
say a carbon atom with the outer cylinder. So, the setup is as following, so consider an outer nanotube
with radius b given by (b cos θ, b sin θ, z. So, consider an outer nanotube with this coordinates, we
are only looking at a tube which is the shell, so it is a cylindrical shell so b is fixed interacting with an
interior point, P which is (δ, 0, 0). Further assume that, we have an infinite nanotube, which means that
my z axis is from minus infinity to infinity and my angular co-ordinate θ will be from minus π to plus
π including the end points. Then let me just write down my area element for the interaction. Any area
element on the cylinder is dA = bdθdz. So to evaluate the interaction energy we use the Lennard-Jones
interaction energy and for Lennard-Jones we have to find the distance of this point P to any point on
the cylinder, so let me denote this by ρ. So the distance row is given by

ρ2 = (b cos θ − δ)2 + (b sin θ)2 + z2

Thus, ρ2 = (b− δ)2 + z2 + 4bδ sin2(θ/2)

So then, so we are ready to write down our interaction energy. The interaction energy between the
point and the cylinder is:

Ec = ηc[−AK3 +BK6]

where, Kn =

∫ ∞
−∞

∫ π

−π
bdθdz/ρn
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So, I have to integrate and find this value of Kn, so let us do that quickly because that will be required
later on and before I do that, I also need to mention that ηc is the atomic surface density of the cylinder
or is the number of atoms per unit area.

(Refer Slide Time: 7:30)

So then let us separate two interactions, so I need to evaluate the integral Kn. To evaluate Kn, I see
that I separate the θ from z in my integration. So to do that, let me introduce the following variables,

z = λ tanψ, −π/2 < ψ < π/2

λ2 = (b− δ)2 + 4bδ sin2(θ/2), λ = λ(θ)

Thus,Kn =

∫ π/2

−π/2

∫ π

−π

λ sec2 ψdθdψ

[λ2 + (λ tanψ)2]n

=

∫ π/2

−π/2
cos2n−2(ψ)dψ

∫ π

−π

dθ

λ2n−1

Note that, λ is a function of θ itself, so I have separated out ψ and θ. So the first integral is quite
straight forward to evaluate and we see that the value is:

π

22n−2
(2n− 2)!

[(n− 1)!]2

Let me call this second integral by I, so all I have to do is to integrate this integral which is given by
I. For this, we have to do another substitution, so use:
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t = sin2(θ/2)

dθ = t−1/2(1− t)−1/2dt

Thus, I =
2

(b− δ)2n−1

∫ 1

0

t−1/2(1− t)−1/2
[
1 +

4bδ

(b− δ)2
t

]1/2−n
(Refer Slide Time: 13:28)

I =
2π

(b− δ)2n−1
F

(
n− 1/2, 1/2, 1,

−4bδ

(b− δ)2

)
So notice that this form of hypergeometric function is slightly more complicated and I am going

to use my quadratic transformation discussed in my previous lecture to simplify this further. Use our
quadratic transformation which was

F (a, b, 2b; z) =

[
1 +
√

1− z
2

]−2a
F

(
a, a− b+ 1/2, b+ 1/2;

(
1−
√

1− z
1 +
√

1 + z

)2)
=

(
b− δ
b

)2n−1

F

(
n− 1/2, n− 1/2, 1, (δ/b)2

)
So, then I club all my results together I found all the other values of the integral so my result is that

the interaction energy after plugging in all the values of the integral is

Ec =
3π2ηc
4b4

[
−AF

(
5/2, 5/2, 1, δ2/b2

)
+ 21/32b6F

(
11/2, 11/2, 1, δ2/b2

)]
So that is the interaction of a cylinder with a point. So then, next we are going to describe the

interaction of two carbon nanotubes.

(Refer Slide Time: 17:16)
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So now I am in a case where I have to model two concentric carbon nanotubes. Let us assume I
have an outer nanotube or a cylindrical shell with a radius b2 and then I have an inner shell of radius
b1. So I have an outer shell and an inner shell. So the setup of the problem is as follows we consider
a cylinder inside the first cylinder and I also further assume my original axis is at an offset epsilon.
So let me consider a cylinder inside the first cylinder with the inner cylinder parametrically given by
(ε+b1 cos θ1, b1 sin θ1, z1) where I assume that ε is my offset from the concentric axis which is the common
axis of the non offsetted concentric cylinders. So ε is an offset, from I would say from the central axis
which is a common to both the concentric cylinders. So then further I have that

−π ≤ θ1 ≤ π
−∞ < z1 <∞

So the solution is as follows, we need to look at the interaction of these two infinite cylinders. So
well of course the first observation is that when we are modelling two infinite cylinders, we have to
essentially do an infinite integration of the interaction terms which is finite, which we found out in the
previous example for point with a cylinder, which means that the answer that we are going to get for
the interaction between two infinite cylinder is infinity. So again which means that we have to look for
interaction energy per unit area, and we are going to evaluate the interaction energy of per unit area
of the inner cylinder. So again, let me just highlight what I just said the interaction energy for infinite
cylinder is not finite. Instead we are going to consider a single ring of the inner cylinder interacting with
an outer cylinder. So essentially we are saying that we are going to calculate the interaction energy per
unit length of the inner cylinder. So then, since z1 is the z coordinate of the of any point on the surface
of the inner cylinder. So we are going to take without loss of generality that z1 is 0. So in that case
all I have to do is use our previous result for the point cylinder interaction case and integrate it over all
points on this perimeter or this rim which will be 2πb(bθ).

(Refer Slide Time: 24:18)
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So what I just said is in our previous example from example 1, that we discussed few minutes back,
we see that the interaction energy of two cylinders per unit length is given by Ecc for cylinders of radius
b1 less than b2 is:

Ecc = ηc

∫ π

−π
Ec(b1dθ1)

=
3π2η2cb1

4b42

[
−AL5 +

21

32b6
L11

]
where, Ln =

∫ π

−π
F (n/2, n/2, 1; δ2/b22)dθ1

So notice we make few observations, note that |δ/b2| < 1 because δ is a point on the inner cylinder,
which means that my series expansion of the hypergeometric function is going to be absolutely convergent.
Let me write down this hypergeometric function now.

Ln =

∫ π

−π

∞∑
k=0

(n/2)k(n/2)k
k!

(δ/b2)2kdθ1

=

∞∑
n=0

[
(n/2)k
bk2

]2
1

k!

∫ π

−π
δ2kdθ1

So all I have to do is to integrate this inner integral and put it in this summation to sum it up.

(Refer Slide Time: 29:24)

5

520



Thus,

δ2 = (ε+ b1 cos θ1)2 + (b1 sin θ)2

= (b+ ε)2 − 4εb1 sin2(θ/2)

=>

∫ π

−π
δ2kdθ1 = 2

∫ π

0

[(b1 + ε)2 − 4εb1 sin2(θ/2)]kdθ1

Replace, sin2(θ1/2) by t,

= 2(b1 + ε)2kπ

∫ 1

0

t−1/2(1− t)−1/2
[
1− 4εb1t

(b1 + ε)2

]k
dt

So notice that again we have been left with a hypergeometric function this integral is a hypergeometric
function with the argument a = −k, b = 1/2; c = 1 and z = 4εb1

(b1+ε)2
. So then, I can rewrite my integral:

∫ π

−π
δ2kdθ1 = 2πb2k1 F [−k,−k, 1; (ε/b1)2]

Thus, Ln = 2π
∞∑
k=0

[
(n/2)k

]2(
b1
b2

)2k
1

k!
F [−k,−k, 1; (ε/b1)2]

So to note that there is one last piece of observation note, so I have found the value of Ln and then I
plug all these values of Ln into these expressions that I have found to begin with. Note that the argument
here of this hypergeometric functions they are negative, which means that the hypergeometric function
is going to terminate after finite number of terms.

(Refer Slide Time: 35:19)
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Since a is less than 0, then the hypergeometric function is represented as a terminating series and I
see that

F [−k,−k, 1; (ε/b1)2] =
k∑
j=0

[(−k)j ]
2

(
ε

b1

)2j
1

j!

So that is what we have and then we plug all these hypergeometric functions into our previous result
to figure out the value of a Ln’s and then finally the interaction energy. So now, we are now quite set to
describe the model of two oscillatory concentric carbon nanotubes.
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