Variational Calculus and its applications in Control Theory and Nanomechanics
Professor Sarthok Sircar

Department of Mathematics
Indraprastha Institute Of Information Technology

Lecture 64 Introduction to Nanomechanics Part 4

So, good afternoon everyone. So, in today’s lecture which is the last lecture of our lecture series, we
are going to continue our discussion on the modelling of nano rod oscillators.
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So, let me just continue our discussion from our previous lecture. So, in my first example I am going
to model a double walled carbon nanotube. So our goal is, to model an oscillatory double walled carbon
nanotubes. So the first example that I have today is, we are going to look at the interaction of a carbon
nanotube, let me draw the figure so we have a carbon nanotube it has a radius b, so it is a cylindrical
shell and suppose I am given a point P which is (4, 0, 0) and P is at a distance of ¢ from the axis of the
cylinder and further, I assume that § is less than B. So I want to model the interaction of this point, let
say a carbon atom with the outer cylinder. So, the setup is as following, so consider an outer nanotube
with radius b given by (b cosé, b sinf,z. So, consider an outer nanotube with this coordinates, we
are only looking at a tube which is the shell, so it is a cylindrical shell so b is fixed interacting with an
interior point, P which is (§, 0, 0). Further assume that, we have an infinite nanotube, which means that
my z axis is from minus infinity to infinity and my angular co-ordinate 6 will be from minus 7 to plus
7 including the end points. Then let me just write down my area element for the interaction. Any area
element on the cylinder is dA = bdfdz. So to evaluate the interaction energy we use the Lennard-Jones
interaction energy and for Lennard-Jones we have to find the distance of this point P to any point on
the cylinder, so let me denote this by p. So the distance row is given by

p® = (bcost — )% + (bsinh)? 4 22
Thus, p* = (b—0) + 2% + 4bd sin?(6/2)

So then, so we are ready to write down our interaction energy. The interaction energy between the
point and the cylinder is:

EC = nc[—AKg —+ BK(;]

where, K, = / bdldz/p"
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So, I have to integrate and find this value of K,,, so let us do that quickly because that will be required
later on and before I do that, I also need to mention that 7. is the atomic surface density of the cylinder

or is the number of atoms per unit area
(Refer Slide Time: 7:30)
u,;/,*-z9~ EENEEEES EEEE %
{O o{}fﬁbﬂ-ﬂ'{ﬁ Kn | SE#;}RJ{ -6 i _f-vuw\ .EJ
lntrroduie Z= >i Jm‘f’ > -TZ iy
(_ O 448 ﬁnﬁ) — 2=%0)
ke [T j N stV Je Iy f -@o@,
e £>\ Foet] ™ M_V__M
T @21
Fea

- 5ol

d8= £ (1-8) S
f_&!;_LéDé_[

£

wibh Bz na

LN
D= &

-

—_—

._d_/_.»_u‘;- EEEEEEES EEE®
docbure 22 - Nanoms chandes ((,mﬁ')

Model DN CNT
R ey
%l' foﬂﬂSfJ"—i‘ &n DU\JC\— l’\ﬂu‘\o":k‘) r,ar‘#-,
rpaddus (5) Q)mgst bgng, g; crtevak _
Wt an felecier ﬂ;am“}' P: (5;0/9 —
» Aegume L‘n(ﬁm\[z hakae ! - LZLD lP(éIila—n‘nv--ng.
L8 £y

» Avea elaest 1 dA- pd3dz T

Bt pT= (st -£)F + @-ns) 42

(b- §) 42" + 4 s abord Tt Jm

gl TE
I"f b

=
> f"-

\n+ /fafx‘n[]:zr P

H

E bFon

Y4

)

iy,
o
Wi
b
w

4
T
-
m
r

So then let us separate two interactions, so I need to evaluate the integral K,,. To evaluate K, I see
)
—m/2 <Y <7/2

that I separate the 6 from z in my integration. So to do that, let me introduce the following variables

z = Atan,
M = (b—6)* + 4bdsin®(0/2), A= \(0)
/2 A sec2 YdOdip
[ A

Thus, K,, =
—m/2
2n 2
= Y)d
/71'/2 1/}/ )\271 !

Note that, A is a function of @ itself, so I have separated out ¢ and 6. So the first integral is quite

straight forward to evaluate and we see that the value is
T (2n—2)!

22n=2[(n — 1))
Let me call this second integral by I, so all I have to do is to integrate this integral which is given by

I. For this, we have to do another substitution, so use
2
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t = sin®(0/2)
do =121 —t)"2at
2 L. aps AT
_ —1/2(1 _ 1\—1/2
I 7(17—5)2"—1/ 7121 —t) [1+ (b_é)Qt}

Thus,
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So notice that this form of hypergeometric function is slightly more complicated and I am going
to use my quadratic transformation discussed in my previous lecture to simplify this further. Use our

a,a—b+1/2,b+1/2 (M/\/gY)

quadratic transformation which was

F(a,b,2b;z) = {H\ém} QaF(
=

b

2n—1
= ) F(n—l/Q,n—l/Q,l,((S/b) )
So, then I club all my results together I found all the other values of the integral so my result is that

the interaction energy after plugging in all the values of the integral is

2
E.= 3bec [ AF(5/2 5/2,1,52/1)2) +21/32b6F(11/2 11/2,1,52/52)}
So then, next we are going to describe the

So that is the interaction of a cylinder with a point

interaction of two carbon nanotubes
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So now I am in a case where I have to model two concentric carbon nanotubes. Let us assume I
have an outer nanotube or a cylindrical shell with a radius by and then I have an inner shell of radius
b1. So I have an outer shell and an inner shell. So the setup of the problem is as follows we consider
a cylinder inside the first cylinder and I also further assume my original axis is at an offset epsilon.
So let me consider a cylinder inside the first cylinder with the inner cylinder parametrically given by
(e+b1 cos by, by sin by, z1) where I assume that € is my offset from the concentric axis which is the common
axis of the non offsetted concentric cylinders. So € is an offset, from I would say from the central axis
which is a common to both the concentric cylinders. So then further I have that

—r<b6;<nm

—00 < 21 < 00

So the solution is as follows, we need to look at the interaction of these two infinite cylinders. So
well of course the first observation is that when we are modelling two infinite cylinders, we have to
essentially do an infinite integration of the interaction terms which is finite, which we found out in the
previous example for point with a cylinder, which means that the answer that we are going to get for
the interaction between two infinite cylinder is infinity. So again which means that we have to look for
interaction energy per unit area, and we are going to evaluate the interaction energy of per unit area
of the inner cylinder. So again, let me just highlight what I just said the interaction energy for infinite
cylinder is not finite. Instead we are going to consider a single ring of the inner cylinder interacting with
an outer cylinder. So essentially we are saying that we are going to calculate the interaction energy per
unit length of the inner cylinder. So then, since z; is the z coordinate of the of any point on the surface
of the inner cylinder. So we are going to take without loss of generality that z; is 0. So in that case
all T have to do is use our previous result for the point cylinder interaction case and integrate it over all
points on this perimeter or this rim which will be 27b(b6).
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So what I just said is in our previous example from example 1, that we discussed few minutes back

we see that the interaction energy of two cylinders per unit length is given by FE.. for cylinders of radius

b1 less than by is
Ecc =T Ec(bldel)
3 772b1 21
— AL — L
ok 5 ggpe

s
where, L, = / F(n/2,n/2,1;62/b3)d6;
—T
So notice we make few observations, note that |§/b2] < 1 because ¢ is a point on the inner cylinder
which means that my series expansion of the hypergeometric function is going to be absolutely convergent

Let me write down this hypergeometric function now
’I’L/2 n/2)k (5/b2)2kd91

/,rk -
(n/2)y 2k
} E/ 0“"do,

_Z{ bk

So all T have to do is to integrate this inner integral and put it in this summation to sum it up
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Thus,
8o = (e + by cosy)? + (b sin 6)?
= (b+ €)? — 4eby sin?(0/2)
- 52 dgy — 2 / (b1 + €)% — deby sin(6/2)]d6,
-7 0

Replace, sin?(01/2) by t,

1 k
4ebyt
—9 2%k / -1/2(1 ~1/2|4 1
(by +€)"r ; t (1—1%) e dt

So notice that again we have been left with a hypergeometric function this integral is a hypergeometric

function with the argument a = —k,b=1/2;¢=1and z = (bﬁi)?' So then, I can rewrite my integral:

/ 52k df, = 2nb2* F—k, —k, 1; (¢/b1)?]

Thus, n—Qﬂ'Z[n/Z ] <b:) =k, =k, 15 (e/b1)?]

So to note that there is one last piece of observation note, so I have found the value of L,, and then I
plug all these values of L,, into these expressions that I have found to begin with. Note that the argument
here of this hypergeometric functions they are negative, which means that the hypergeometric function
is going to terminate after finite number of terms.
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Since a is less than 0, then the hypergeometric function is represented as a terminating series and I
see that

k 2j1
Fl—k,—k,1; (¢/b1)?] Z k);] <b1> 5

Jj=

So that is what we have and then we plug all these hypergeometric functions into our previous result
to figure out the value of a L,’s and then finally the interaction energy. So now, we are now quite set to
describe the model of two oscillatory concentric carbon nanotubes.
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