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So, my Lennard Jones also known as the LJ potential is defined as the interaction energy or the
potential function is

φ(ρ) = −A(ρ)ρ−m +B(ρ)ρ−n

where, my A represents the attractive component because of the minus sign and B represents the
repulsive component because of the plus side. So, then and my ρ is the distance between two atoms or
the atoms under consideration or the structures under consideration and then typically these coefficients
m,n these are natural numbers. So, sometimes these are also called as the Lennard Jones mn-potential
which tells us what is the strength of the attractive as well as the strength of the repulsive components of
the potential. So, for example if my m = 6 and n = 12, which is the most common occurrence of Lennard
Jones potential in almost all the physical models that are used, also known as the 6-12 LJ-potential. So
let me term it as example A. Another potential that is frequently used is the 5-10 potential and 10-12
LJ-potential, frequently used to model the hydrogen bonding. So, if I were to plot the L-J potential, see
above. If we were to plot the following function,

φ(ρ) = 4ε

[
−
(
σ

ρ

)6

+

(
σ

ρ

)12]
where ε and σ are real constants. Then if I were to plot this L-J potential, I see that this looks like the

plot given above. So, in this part of the potential we have the repulsion and other part of the potential
represents the attraction potential. We will see that, for this potential, we definitely have the minima
and the minima and the minima here is given by the ε where ε is also known as the potential depth,
also known as the energy well-depth. So, suppose I model my carbon nanotube with L-J potential, then
my well-depth will denote this parameter ε as shown in this example. So, ε is the well-depth and σ is
the distance from 0 to this minimum of the L-J potential. So σ is Vander Waals distance and it turns
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out to be

(
B
A

)1/6

. Well, all we have to do is just take the derivative of ρ and set it equal to 0 and that

will give me my ρ∗ or critical value which is σ. So this is a typical example of the L-J potential that we
will be using ,so we can see that Vander Waals interactions are usually short range interaction. Why?
Because, notice that as ρ goes to infinity the interaction nearly goes to 0. So, in fact, I would say that the
Lennard Jones potential represents a short range repulsion but medium range attraction, which means
that if I have that ρ goes to 0, then I can see that we are in the repulsive range. If ρ goes to infinity
then it is very weakly attractive and in the intermediate range, we have some reasonable attraction via
this potential. So, what I said is the following.

(Refer Slide Time: 07:06)

So, Vander Waals interaction energy in general is short range only nearest neighbor interaction and
ideally modeled by L-J potential. We have seen that all these properties of Vander Waals interaction
are quite appropriately captured by L-J potentials and these Vander Waals interaction energies are
typically applied to non-bonded/non-polar structures. So these are very different than ionic interactions
or covalent interactions. So then let me start our basic modeling effort by looking at the interaction of
a point with a plane. For example, a carbon atom with a graphene sheet. So I am going to step by step
build up the model where eventually we are going to look at the oscillatory mechanics of 2 carbon nano
rods. So, let me look at the first of the example to discuss. So find the interaction energy (E) and the
Vander Waals force (Fvdw) for a single carbon atom, a distance z from an infinite graphene sheet. So,
we have a graphene sheet where the sheet contains these tessellated hexagonal rings, and so on so forth
and then, we have a carbon atom which is sitting on top, well it is on top of this sheet and we want to
model the interaction of this carbon atom with the sheet.

So assume to model this interaction, let me place this carbon atom at a convenient location to the
sheet. So, we are going to assume that the carbon atom coordinate is 0, 0, Zwhere, Z is the distance of
the carbon atom from the sheet and the sheet is on the x− y plane. So these are my assumptions. The
position of the sheet is given by the x− y plane is x, y, 0, which means ρ which is the distance between
the carbon atom, ρ which is the distance between the carbon atom and the graphene sheet is given by
[
√
x2 + y2 + z2]1/2. Then let me model the interaction or the Vander Waals interaction of this atom

with the sheet using our Lennard Jones potential or the 6-12 potential.

(Refer Slide Time: 11:34)
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Using Lennard Jones 6-12 potential, I see that my interaction energy is E which is

E = η

∫ ∞
−∞

∫ ∞
−∞

[
−A

(x2 + y2 + z2)3
+

B

(x2 + y2 + z2)6

]
dxdy

First component in the square bracket is ρ6 and second component is ρ12, thus 6-12 potential. So,
this is my interaction energy. Note that the constant η is the average number of atoms per unit area of
the graphene sheet. So, we are calculating the average interaction energy. Now, all I have to do is to
evaluate this double integral. I can write down this double integral as

= η[−AI3 +BI6],where A and B are constants,where, In =

∫ ∞
−∞

∫ ∞
−∞

dxdy

(x2 + y2 + z2)n
.

So all I do is I evaluate for a general n plug n = 3 and 6. Notice that the factor (x2 + y2 + z2)
tells us that we should use the cylindrical polar coordinates. Z is fixed, so the only variables in our
integration are r, θ. So, we are going to use cylindrical polar coordinates with Z fixed. So changing to
polar coordinates because Z is fixed, I see that my intergral turns out to be

In =

∫ 2π

0

∫ ∞
0

r dr

(r2 + z2)n
=

π

(n− 1)z2n−2

and then, from here I can plug all these values and I see that my interaction energy is

E = ηπ

[
−A
2z4

+
B

5z10

]
So from here I can calculate my Vander Waals force. I had need to differentiate with respect to Z or

the axial coordinate.
(Refer Slide Time: 15:46)
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So my Vander Waals force is

Fvdw =
∂E

∂z

= πη

[
−4A

2z5
+

10B

5z11

]
= 2πη

[
−A
z5

+
B

z11

]
So, typically the values of these constants for a graphene sheet are follows. I see that my A is given

to be 17.4 electron volt Angstrom 6 and the constant B is the quantity 29000 electron volt Angstrom
12 and my constant η comes out to be 0.3812 atom per Angstrom square. Let me just quickly plot my
interaction energy and my force. So, my x coordinate is the axial component Z is in Angstrom. So, the
interaction energy is an even function of Z. So, these are my curves for E and if I were to plot the force,
I see that the force follows the curves. So, the force is also the maximum at the same point where the
energy attains the minimum. So FZ and the force in the other half is as follows. So what I am trying
to show is my force curve is anti-symmetric because of the odd terms and my energy curve is symmetric
because of the even terms and hence, we can see that the minimum or the maximum force is given by the
minimum of the energy curve and vice versa. So then I would like to go one step further and calculate
the interaction energy of two parallel graphene sheets. So, the next problem that I want to highlight,
find the interaction energy of two parallel infinite plates of grapheme, at a distance Z. So, the graphene
sheets are separated by a distance Z.

Now, so we have two infinite sheets of graphene, so these are all Z tending to minus infinity, tending
to infinity. And I want to find the intersection of these two infinite sheets. Now, notice that when we
found out the intersection of a point with a sheet, we got a finite answer, so that the natural way to
model this setup is we sum up the point sheet interaction. Now on two infinite sheets there are infinitely
many points, which mean that we are doing an infinite sum of a finite quantity or an infinite sum of the
point sheet interaction and we expect the answer to be infinite. So instead of finding the answer, that is
the interaction energy of two infinite sheets, I am going to find out the answer as the interaction energy
of two infinite sheets per unit area of the two sheets. So I am going to find out the interaction energy per
unit area to get a finite answer. So as I just said the following, the interaction energy is an infinite sum
of a non-vanishing term and it is infinite sum of a non-vanishing term and it is infinite. So, we instead
calculate the interaction energy per unit area.

(Refer Slide Time: 21:31)
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So, we calculate the interaction energy, interaction energy per unit area. So, let me just introduce
the concept of η. So, I denote my number of atoms per unit area and each atom interacts individually
with the other plane. Now which means that my interaction energy per unit area, let me denote it as
Epua, per unit area. E of per unit area will be the answer that we found in example number 3. So the
answer was:

Epua = ηE

= πη2
[
−A
2z4

+
B

5z10

]
So we take, we take A to be 15.2, B to be 24100. These are typical values of graphene sheet interaction

and what we find is the following. We find that η is the same as in example 3 that we have discussed
few minutes back. Now, how can we find the equilibrium spacing between the two sheets, the static
equilibrium? By minimizing the force, or finding the force or minimizing the energy. So, nature is going
to provide us with the equilibrium when the energy of interaction is minimum.

So, it turns out that the equilibrium spacing between given by Pvdw is denoted as the the derivative
of the energy, Epua with respect to Z and set equal to 0. From here I get that my equilibrium spacing
Z0 turns out to be (B/A)1/6, and that comes out to be 3.41 Angstrom. Now what is the issue here?
The issue is that experimentally the values that are reported by these physical chemists, that is on
the equilibrium spacing of these sheets is slightly lower. So experimentally, Z0 is reported to be equal
to 3.35 Angstrom. Although close but it is different than the values that we have found through our
model. So, this question that is asked is where is the discrepancy in our model? And the discrepancy
lies in the structure of graphene itself. We know that graphene has parallel sheets which are almost
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equidistant apart. So, which means that any point on one sheet of grapheme, not only interacts with
its nearest graphene sheet but also interacts with all the other graphene sheets which are at distance Z,
2Z, 3Z, 4Z and so on so forth. So, we must include all those other graphene sheets which are at a larger
and larger distance away from the sheet under consideration. So, this is the issue that I want to highlight.

(Refer Slide Time: 27:03)

So, the reason for the discrepancy is that graphite atoms interact not only with its nearest neighbor
but with all other planes. So which means that we have to incorporate the effect of all other graphite
sheets that we have ignored which are lying parallel to each other. So the new model in our graphene
structure is, we assume that there exists an infinite sheet such that the number of planes are all separated
by the same distance. Let me call this distance as Z. So, one sheet is separated from the central sheet
by Z, the other also by Z and so on so forth. So, if we were to find the total distance they become Z,
2Z, 3Z and so on so forth. So, which means that my total interaction energy will be the sum of each of
these plates. So, that becomes:

E = 2πη2
∞∑
n=1

[
−A

2(nz)4
+

B

5(nz)10

]
Notice that we are summing up the same quantity that we had introduced in our previous expression.

I have replaced by Z, 2Z, 3Z and so forth, so on so forth. So inside the sum I have the same expression
at different distances and outside I have also introduced a factor of 2 because each sheet interacts with
the sheet above and below. So, the 2 is to take into account the sheet interaction above it and below
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it. Otherwise, we have to sum n from minus infinity to plus infinity. So, then this particular summation
becomes:

= 2πη2
[

−A
2(z)4

∞∑
n=1

1

n4
+

B

5(z)10

∞∑
n=1

1

n10

]
Notice that this particular summation is a famous Riemann Zeta function evaluated for n equal to,

for 4 and the second summation is the the Zeta function evaluated at 10, where

∑ 1

nm
= ζ(m), i.e. Riemann zeta function

Also, ζ(4) =
π4

90
; ζ(10) =

π10

93555

So again, I have picked up the handbook of mathematical functions and found out these values. Now
finally, when we differentiate this interaction energy with respect to Z and set it equal to 0, I see that
my Z0 this time is going to be

Z0 =

[
B

A

ζ(10)

ζ(4)

]1/6
And this gives me after plugging in all the values for B, A as described previously, this gives me Z0 to

be 3.37 Angstrom. Notice how close is this value to our, to the experimentally reported value. So it turns
out that the model had to incorporate certain additional term to realistically simulate the experiments.
So I am going to continue my discussion on the modeling of the oscillatory motion of carbon nano rods
in my next lecture by slowly building up this example. And towards the end of the next lecture, I am
going to look at the variational form or the Hamilton’s formulation of the oscillatory motion of carbon
nano rods. So thank you very much for listening. Thanks a lot.
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