Variational Calculus and its applications in Control Theory and Nanomechanics
Professor Sarthok Sircar

Department of Mathematics
Indraprastha Institute Of Information Technology

Lecture 62 Introduction to Nanomechanics Part 2

Let me also introduce three other concepts. One is the integral form of the Hypergeometric Func-
tions and also look at the Hypergeometric Functions for two variables x and y and also introduce certain

special integrals known as the elliptic integrals.
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Then there is another relation that is the relation of symmetry that comes right from our series
representation of the Hypergeometric function. We also see that there is a symmetry involved in this

function i.e. F(a,b,c;z) = F(b,a,c;z).
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And then the fourth important relation is the relation by a mathematician Erdelyi which is the

Double Integral Form. The Double Integral Form by Erdelyi and this is given as follows
1-— t)cfbfl(l — 1) e dtdr

[F(C)F 1 1 tbflTafl(
(O)T'(c—b) /0 /0 (1 —trz)e

F(a,b,c;z) =
(@.5,62) = FTe o
Now I am also going to introduce the Hypergeometric Function of two variables and we will look at

a special form of these two variable functions known as the Appell’s Form

m4+n b n _m n
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Now, some useful relations between the Appell’s form or the two variable form and the regular form

or the one variable form of the Hypergeometric Functions

Fi(a,b,V,c;x,0) = F(a,b,c;x)

(Refer Slide Time: 7:34)
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Similarly,
Fi(a,b,b',¢;0,y) = F(a,b', c;y)
So, in general I can write down my Hypergeometric Function of two variables for the general case as
an infinite sum of Hypergeometric Functions of one variable. So in general, in general Appell’s form can

be expressed as an infinite sum of the ordinary Hypergeometric Function as follows

Fi(a,bV, c;x,y) = Z Jm a+m,b c+m;y)z™

m=0

So finally let me also introduce the relations of the so-called elliptic integrals. So, we have seen these
elliptical integrals earlier when we were describing the solution of the bent beam problem or elastica. So

we will have the elliptic integrals of first, second and third kind

¢ dv
F(o,k) —————— 0<k<1 0<¢p<7/2
0 1 — k2sin?v
¢
k‘):/ V1 —Ek2sin®vdv, —oo < a? < oo
dv
(¢, a? k)
\/1—@251n ’U\/l—]{i281n v

So with regards to these three elliptic integrals, I have also some useful relations
LetK (k) = F(n/2,k); E(k)= E(r/2,k)

So, then I have some relations which we will be using while we solve, while we integrate our model

equations.
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One more relationship is the Legendre relation.

E(k) K(K) + E(K) K(k) — K(k) K(K) = /2,

and we have more properties of the form

F(0,k) = E(0,k) =0
F(¢,0) = E(¢,0) = ¢
E(¢,1) = sing

F(¢,1) = log[tan ¢ + sec ¢

So, these are my relations that we will be using in our later development of the model. So, this is
so far the basics that I have covered in terms of the special functions. Now my next set of lectures are
going to cover some basics in physical chemistry, namely the introduction of interaction energy, the Van
der Waals interaction energy and the so-called Lennard-Jones potential. So let me just introduce some
basics in physical chemistry. So again, these basics are extremely rudimentary in the form that almost all
students taking this course must have done in certain high school science courses. So I am just revising
some of these basics of physical chemistry. Let me start with the concept of interaction energy. So, when
I talk about interaction energy, I talk about the interaction of 2 non-bonded structures. We do not talk
about bonds like covalent bonds, ionic bonds and so on. We just talk about the energy of interaction
between 2 structures, e.g. 2 molecules, 2 compounds which are not bonded to each other. So I denote
it by IE and these are for 2 separate non-bonded molecular structures. So if I want to find the interac-
tion energy of many structures, we could either use the discrete application where we can individually
sum the interaction energy or if this distribution of these structures are nearly homogeneous and the
distance is infinitesimally small, then possibly we could use as the interaction energy in the form of an
integration rather than a summation. So for discrete applications I can sum the interaction energy per
atomic pair or sum the interaction energy per structure where my net interaction energy is E is given by
E = Z Z ®(pi,j), where ¢(p; ;) is defined as the potential or the interaction potential function formy

i
atom pairs (4, 7). So, p; ; is the interaction potential for atom pair (7, j) and located at p; japart. So then
for continuous applications, I can change my double summation as double integral. For continuum appli-
cations, I can assuming that atoms are uniformly distributed over the entire range of surface, essentially,
we do not want non-uniform distribution otherwise some integration may not hold or may not make sense.
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So, assuming that the atoms are uniformly distributed over the entire range of the surface, then I
can describe my interaction energy IE per atom pair as follows. So

E=771772/ / d(p)dArdAs;

So, I am talking about the atomic or the 2 pair structure interaction and then I take the integration of
these pair structures. And also, these are multiplied by the number of atoms per unit surface or number
of structures per unit surface where my 7; is the mean surface density of atoms or structures on the
ith molecule and my s; is a surface, surface of the ith molecule which means 7; is the number of atoms
per unit surface of the structure and we are considering the ith structure. So that is the interaction
energy per pair. So let me highlight this concept with an example. A very, very basic example of a
graphene sheet. We know that graphene has at the molecular level, a hexagonal structures and also
graphene is arranged in such a way that each of these structures are arranged in sheets. So, we have the
arrangement of graphene in the form of sheets and that is why graphene is very slippery. So, let me look
at a hexagonal structure of graphene. So let us see in figure above, a sheet of graphene.

We have hexagonal structures of graphene where each of these vertices of the hexagon are occupied
by carbon atoms. Let me just extend this structures. Notice that if we were to look at each of these
joints, this one joint which is occupied by one carbon atom is shared by 3 hexagonal rings. So, ring like
1,2,3, which means that since there are 6 carbon atoms in 1 ring, so essentially the number of carbon
atoms per ring will be 6 times one third or 2 carbon atoms per ring because each carbon atom is shared
by 3 rings. So, which means that the atomic density per molecule of the graphene is 2. So the example
says find the surface density of carbon atoms on a sheet of graphene. Graphene consists of the hexagonal
rings or the so called tessellated, tessellated hexagonal rings, so each atom in the ring is bonded to 2
other rings which means that my atomic density Eta will be 6 atoms times one third because shared
be 3 different rings divided by the surface of 1 ring, let us say Apex. So, I see that my Eta comes out
to be 2/Ayex or where area is the area of 1 hexagon and that gives me my surface or the number of
atoms per unit area of the ith ring of the graphene. Once we have introduced the concept of interaction
energy, let me also look at the specific interaction energy known as the Van der Waals interaction. So
again, Van der Waals interactions are non-contact interaction unlike the interaction like covalent or ionic
interactions. So, these are non-contact interactions.

(Refer Slide Time: 24:27)
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So we will talk about Van der Waals interaction energy. These are either attractive or can be repul-
sive. We will look at a specific form of the interaction potential which models this attractive/repulsive
interaction energy. Namely we will see that the, if the atoms come very close to each other or almost
touch each other, this interaction energy becomes strongly repulsive and when they move slightly away
from each other, eventually they become attractive and then the amount of attraction, it falls away
exponentially. So, as I just said these are attractive or repulsive interactions and these are non-bonded
between two or more molecules. So, I am not going to go into extreme depth of these interaction energy.
I am going to just highlight the basic mechanism or the philosophy of these interactions which is useful
for our model development. Students who are more interested, again, can look at some of the basic
school text books in Physical Chemistry. So these are non-bonded interaction between two or more
molecules, also known as the intermolecular forces. So then once we have the Van der Waals interaction
energy, I can describe my Van der Waals force. Van der Waals force between two non-bonded atoms
is the gradient of Van der Waals interaction energy(E) i.e. F,4, = —VE. I have put a minus sign so
that to represent that this force is an attractive force. So let me highlight this interaction energy with a
quick example. Suppose we are given a cylinder, let us say a carbon nanotube and we are also given the
interaction energy of the carbon nanotube with some surrounding particles. So, these are all cylindrically
symmetric objects and I want to find the interaction of the Van der Waals force of the carbon nanotube
with its surrounding objects. Note that due to cylindrical symmetry, the radial components of the force
completely balance out each other and the only force that we will have will be along the axial direction or
F.. So suppose my molecule that we are after is rotationally symmetric around the z axis. My molecule
is rotationally symmetric around the z axis then the resultant force is in axial direction and

dew = _%k
Notice that along r, all the components of the force, they cancel each other. So negative sign means
attractive and along all other directions. So once I have described my Van der Waals interaction energy,
let me also describe the so-called Lennard-Jones potential which describes these Van der Waals interaction
energy. So, Lennard-Jones potential has a very specific form and it represents this attractive, repulsive
type of an interaction versus the distance between the 2 atoms or structures.
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