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I am going to describe two methods of constrained optimization.The first method is the Penalty function
method. We will see that we are going to change the inequality into an equality constrained by introducing
the so called Penalty function or in the language of calculus of variation introducing a non-holonomic
constrained or a differential constrained.

Consider the system given by ˙̄x = f (x̄, ū, t) and the performance index which is given by J =
∫ tf
t0
V (x̄, ū, t) dt

, where x̄ and ū are usual state and control variables. And now we look at some inequality constraints.
So consider inequality vector constraints on state variables ḡ (x̄, t) ≥ 0 . The idea of this Penalty method
is as follows : we will introduce a new state variable xn+1 by

ẋn+1 = fn+1 (x̄, t)

= [g1 (x̄, t)]
2
H (g1) + ...+ [gp (x̄, t)]

2
H (gp)

where H (gi) are unit Heavy side function defined as

H =

{
0 if gi (x̄, t) ≥ 0

1 if gi (x̄, t) < 0
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Notice that when constraint is negative we are taking a square of the constraint so right hand side will
always be positive which means that right hand side will never be less than 0. We will have the minimal
value of the right hand side is 0.

(Refer Slide Time: 05:45)

Further require that the new variable has a boundary condition xn+1 (t0) = xn+1 (tf ) = 0 . Now, we
setup the Hamiltonian

H
(
x̄, ū, λ̄, λn+1, t

)
= V (x̄, ū, t) + λ̄ (t) f (x̄, ū, t) + λn+1fn+1

And then we apply optimality condition or Hamilton’s equation, we have to solve the following set of
equations

˙̄x? = ∂H
∂λ̄

= f (x̄?, ū?, t) ; ˙̄x?n+1 = ∂H
∂λn+1

= fn+1 (x̄?, t)

And then for co-state variable we also have n+ 1 equations. The co- state variables are

˙̄λ? = −∂H∂x̄ ; λ̇?n+1 = − ∂H
∂x̄n+1

So, we have 2n+ 2 equations to be solved. Notice that the only dependence of H on xn+1 is via λn+1 so
H does not explicitly contain xn+1 as such. So let me just highlight this penalty function method with
an example.

(Refer Slide Time: 09:25)
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The example is consider the second order system given by

ẋ1 = x2

ẋ2 = u

This is a similar system that we had solved in our previous example and this time performance index is

J (x̄, u) = 1
2

∫ tf
t0

(
x2

1 + u2
)
dt

And further, it is given that the final point tf is free and the final state x (tf ) is also free.

And the control function u (t) is constrained as −1 ≤ u (t) ≤ 1 ∀ t ∈ [t0, tf ] . And further the state
variable x2 is constrained given by |x2| ≤ 3 ∀ t ∈ [t0, tf ] . Notice that state constraints are as follows :

x2 + 3 ≥ 0 let me call this constraint as g1 so g1 ≥ 0

3− x2 ≥ 0 let me call this constraint as g2 so g2 ≥ 0

Essentially these are constrained problems where we are putting constrained on the state variables. In
my previous discussion where we were discussing the Pontryagin minimum principle, we were putting
constrained on the control variable.

Step 1 : We setup the Hamiltonian.

H =
x2
1

2 + u2

2 + λ1x2 + λ2u+ λ3

[
(x2 + 3)

2
H (x2 + 3) + (3− x2)

2
H (3− x2)

]
whereH (x2 + 3) andH (3− x2) are the unit Heavy Side function and then we have to setup the equations
for state variables and co state variables. We will have 2n+ 2 equations.
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Step 2: ẋ?1 = x2 ; ẋ?2 = u ;

ẋ?3 = fn+1 = (x2 + 3)
2
H (x2 + 3) + (3− x2)

2
H (3− x2)

λ̇1 = − ∂H
∂x1

= −x?1 ;

λ̇2 = − ∂H
∂x2

= −λ1 − 2λ3

[
dfn+1

dx2

]
;

λ̇3 = − ∂H
∂x3

= 0 ⇒ λ3 = constant

Then we have to solve these 2n+ 2 equations and I have 2n+ 2 constraints x1 to x3 and λ1 to λ3, this
is should be solvable. Find the optimal control u?. let us look at the Hamiltonian again notice that in
the Hamiltonian u appears here as I have circled and u also appears here which means that if we were
to minimize or maximize the Hamiltonian with respect to this function u, we only need to look at the
circled quantity. So to find u? consider the modified Hamiltonian

Hu = u2

2 + λ2u

From here when we take the derivative of Hu with respect to u we see that

∂Hu

∂u = u+ λ2 = 0 ⇒ u = −λ2

Since |u (t)| ≤ 1

⇒ u? (t) =


1 ifλ?2 < −1

−λ?2 if − 1 ≤ λ?2 ≤ 1

−1 ifλ?2 > 1

We have six unknown and six equations the unknowns are x1 , x2 , x3 and λ1 , λ2 , λ3 and from here
when we plug u = −λ2 provided it is not on the boundary,the control is found right away from our
solution. I would just end the discussion in this example by saying that xi’s and λi’s are found from step
(2) that should be the end of the discussion in this example. So that highlights our penalty function
method where the penalty is placed on the state variables. Now, we are going to wrap up our discussion
by highlighting yet another method.

(Refer Slide Time: 22:29)
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The final method namely the Slack variable method also known as the Valentine’s method. So I am
going to discuss this Valentines method. We introduce a Slack variable to change the state inequality
constraint into an equality constraint. Consider the optimal control system given by

˙̄x = f (x̄, ū, t) ; x̄ (t0) = x0 (1’)

which minimizes the performance index

J = F (x̄ (tf ) , tf ) +
∫ tf
t0
V (x̄, ū, t) dt

subject to the state variable inequality given by S (x̄, t) ≤ 0 . Now I am going to change this inequality
constrained into an equality constrained by introducing a new variable known as the slack variable. So
introduce slack variable (α) such that

S (x̄, t) + α2(t)
2 = 0 (1)

Notice that α is real valued function and α2 (t) will always be positive which means S = −α
2(t)
2 or

S ≤ 0 only when α = 0. So this new equality certainly satisfies the original inequality with this new
variable. Our assumption here is that S is differentiable up to some orders, let us say the constraint is
differentiable up to p orders.So, S is the pth order constraint such that pth order contains u (t) explicitly.
Since it is a pth order constraint means that S is smoothly differentiable up to order p. Differentiating
(1) p-times with respect to independent variable t ,we get the following set of relations:

S1 (x̄, t) + αα1 = 0

S2 (x̄, t) + α2
1 + αα2 = 0

.

.

.

Sp (x̄, t) + terms involving α1, α2, ..., αp = 0 (2)
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where Si = ∂iS
∂ti ; αi = ∂iα

∂ti

From pth equation

.. ū = g (x̄, α, α1, ..., αp) (3)

The modified plant condition or modified equation (1′) is

˙̄x = f (x̄, g (x̄, α, α1, ..., αp) , t) ; x (t = t0) = x0

α̇ = α1 ; α (t = t0) = α (t0)

α̇1 = α2 ; α1 (t = t0) = α1 (t0)

.

.

.

α̇p−1 = αp ; αp−1 (t = t0) = αp−1 (t0) (4)

So finally, modified performance index is as follows

J = F (x̄ (tf ) , tf ) +
∫ tf
t0
V (x̄, g (x̄, α, α1, ..., αp) , t) dt

and modified initial condition from (2) are as follows

α (t0) =
√
−2S(x(t0))

t0

α1 (t0) = −S1(x(t0))
α(t0) and so on .

(Refer Slide Time: 34:18)
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All the relations (1),(1′),(2),(3) and (4) they are going to describe unconstrained problem for the control
variable u or αp whatever it is. Because the pth equation will be given αp and that will directly give the
function u. And we could apply the Pontryagin minimum principle if there is a constraint on u . Let me
just summarize how we setup the problem. Define (n+ p) state vectors as

Z (t) = [x̄ (t) , α (t) , ..., αp−1 (t)]

We define new plant condition as Ż = F (z̄ (t) , αp (t) , t) where F is an (n+ p) dimensional vector
representing the RHS of condition (4). And finally define Hamiltonian H = V + λF where λ is (n+ p)
dimensional Lagrange multiplier.

And finally let me complete description by writing down the equations to solve we have state variables
in the form of a vector equation as

˙̄Z (t) = ∂H
∂λ̄

with given initial condition Z (t0) = z0 and co- state variables are as follows ˙̄λ = −Hz . Also we have
that λ (tf ) = {Fx, 0, 0, ..., 0} . Notice that only the first n components of λ will be non-zero, the rest are
all set equal to zero. And control variable is given by

∂H
∂αp

= Hαp
= 0

And from here we can get control solution u?. So that completesthe description of Slack variable method
which completely converts the inequality into an equality and then converts original system into a slightly
lengthier system but system which can be treated as an unconstrained optimization problem. In this
lecture I am going to end my discussion on the optimal control theory and mention that students are
requested to look at the text I have highlighted in my introductory video on the reference for more
problems. And in the next lecture I am going to start with another application of calculus of variation
namely looking at the motion of carbon Nano rods.
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