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Constrained Optimization in Optimal Control Theory Part 4

In this second half of this lecture discourse on Optimal Control Theory and solution of optimal controls
via calculus of variations, I am going to look at problems involving constrained optimization and mainly
with the introduction of the Hamilton-Jacobi-Bellman equation.

(Refer Slide Time: 00:37)

Today’s topic of discussion will be the following. We are going to look at The Pontryagin Minimum
Principle, also known as the constrained optimization . This rule is denote by rule PMP. Also, we are
going to discuss derivation as well as the use of Hamilton-Jacobi-Bellman equation. Notice that this
equation will be very similar similar to Hamilton-Jacobi equation.

Let us recall some of the concepts that we have covered in the last class. Mainly we have done uncon-
strained optimization that is unconstrained minimization via the introduction of the Hamiltonian or the
Pontryagin H function.So, far we have done unconstrained optimal control and we are going to recall
our solution methodology. We form the Hamiltonian

H (x̄, ū, λ, t) = V (x̄, ū, t) + λ̄f (x̄, ū, t)

where λ̄ is co-state function or the Lagrange Multiplier. And we solve for the optimal control problem.
We solve for the solution of the form
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∂H
∂ū |x̄? = 0

So, this is for control relation. And then we also had 2n equations

∂H
∂λ̄
|x̄? = ˙̄x?

This equation is state relation which gives me state vector relation.

−∂H∂x̄ |x̄? = ˙̄λ?

This equation is co-state relation which gives me Lagrange Multiplier. Notice we have one relation given
for the control, n relations for the state relations and n equations for the co-state relations. And we had
the natural boundary conditions which are[

∂S
∂x̄ − λ

]
|x̄? δxf +H + ∂S

∂t |x̄? δtf = 0

So, this was in summary of the total methodology of solving our unconstrained optimal control problem.

(Refer Slide Time: 05:34)

Now, suppose we place restrictions on controls function ū (t) such that |ū (t)| ≤ u or component-wise
what we see is the following:

u−j ≤ uj (t) ≤ u+
j

Now, we cannot assume that the control variation δu is arbitrary.Notice that so far we have been
optimizing performance index or functional by setting the first variation equal to zero. The moment we
have a constraint on the control variable, we cannot set the equality condition but certainly we would
like the first variation to be non negative. So, the necessary condition for u? to minimize J will be

δJ [ū?, δū] ≥ 0 (A)
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We can now break down the condition (A) into two parts. Suppose we fall back into unconstrained case
or optimal u is found by taking the derivative or it is within the constraint then this inequality reduces
to the strict equality. Otherwise if the the minimal u or the minimal control is found on the boundary
then you have to solve the inequality.So , condition (A) is valid if optimal control ū? lies on the boundary
or is constrained. OR δJ = 0 if u? (t) lies within the boundary or has no constraints.

Let us look at this sort of a problem. Recall that first variation was as follows:

δJ [ū?, δū] =
∫ tf
t0

{[
∂H
∂x̄ + λ̇

]
δx̄+

[
∂H
∂ū

]
δū+

[
∂H
∂λ̄
− ˙̄x
]
δλ̄
}
dt+

[
∂S
∂x̄ − λ̄

]
|x̄? |tf

δxf+H+ ∂S
∂t |x̄? |tf

δtf

Let us call the above relation as (1) . Recall that when we were setting the first variation equal to zero
we had four condition set equal to zero. So, now again we are going to set all but one condition equal to
zero that is this quantity which I am circling. Because no longer the optimal Hamiltonian can be found
by differentiating with respect to u because the derivative on the boundary does not exist. So, we are
including the boundary values of the constraint variable u.

Let me call this relation (a), this is relation (b), and this is relation (c), and these boundary condition
are relation (d).

(Refer Slide Time: 13:26)
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So, in constrained optimization we set relation (a),(c),(d) equal to zero.And note that

∂H
∂ū |x̄? δū ≈ H

(
x̄?, ū? + δū, λ̄?, t

)
−H

(
x̄?, ū?, λ̄?, t

)
(b’)

Using (b′) in (1) we see that

δJ = H (ū? + δū)−H (ū?)

We have to satisfy that δJ ≥ 0 . This is to begin with we had and from here we get

H (ū?) ≤ H (ū? + δū)

So, the final argument is that the Hamiltonian value at the optimal condition for the constrained opti-
mization should be such that it gives me the minimum value in the neighborhood of the optimal control.
Let me denote ū? + δū = u (t) and we see that minimum condition has changed into an inequality that

H (ū?) ≤ H (u)

And this exactly Pontryagin Minimum Principle. Let me just state the necessary condition that we
have found for the constrained control problem.The necessary condition for constrained optimal control
problem should minimize the Hamiltonian and that isPontryagin Minimum Principle states. Now, let us
look at the solution methodology .

(Refer Slide Time: 18:24)
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The summary is as follows: We start with a statement. Given plant condition is ˙̄x = f (x̄, ū, t) and
performance index is given to be

J = S (x (tf ) , tf ) +
∫ tf
t0
V (x̄, ū, t) dt

with boundary condition x̄ (t0) = t0 , x̄ (tf ) = xf and this could be free boundary condition. Find the
optimal control.

The solution method is as follows. We will see that the only difference from our previous method for
that previous description in case of unconstrained optimization is we are going to replace our equality,
where we optimize our control function with an inequality which minimizes control Hamiltonian.

Step 1 : Form the Pontryagin H function.

H
(
x̄, ū, λ̄, t

)
= V (x̄, ū, t) + λ̄f (x̄, ū, t)

Step 2 : Minimize H with respect to u (t) (≤ u) such that

H
(
x̄?, ū?, λ̄?, t

)
≤ H

(
x̄?, ū, λ̄?, t

)
we have to minimize by looking at the boundary values. The interior values are found as we have done
for unconstrained case.

Step 3 : Solve 2n state and co-state equations given by

˙̄x = ∂H
∂λ̄
|x̄? ; ˙̄λ? = ∂H

∂x̄ |x̄?

with the boundary condition

H + ∂S
∂t |x̄? |tf

δtf +
[
∂S
∂x̄ − λ̄

]
|x̄? |tf

δxf = 0
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The sufficient condition for unconstrained problem was to check the sign of ∂2H
∂u2 and if this is positive

then we are guaranteed minimum. And that was possible only for the unconstrained problem. If u is
found in the interior of the boundary we can still take this second derivative otherwise we will again
have to resort to the Pontryagin function. At the boundary values these derivatives are not available

and these are not to be evaluated. So, for constrained problem ∂2H
∂u2 to be evaluated at interior points.

We cannot justify the second derivatives for the boundary points.

Let us look at some examples. I have a very simple example to begin with. We need to minimize the
scalar function H = u2 − 6u+ 7 subject to constrained |u| ≤ 2 .

Check that ∂H
∂u = 0 gives us u = 3 that is not a viable solution because it exceeds our constraint. So,

u = 3 is outside the constraint. Then we have to check the boundary values. Notice that

H (u = 2) = −1 ; H (u = −2) = 23

So, u? = 2 is optimal solution. So, certainly we will not get the derivative equal to zero at u? = 2
but it gives optimal for the constrained problem. Let me wrap up the discussion of this part of the
constrained optimization before giving examples by mentioning two other points.The first point is we
have two additional necessary conditions.The first condition is if the final time tf and the Hamiltonian
H does not depend on t explicitly then H

(
x̄?, ū?, λ̄?

)
is a constant for all t ∈ [t0, tf ].

Now students should immediately recognize this additional necessary condition as version of Beltrami
identity because if the Hamiltonian is independent of the independent variable then we know that from
the Beltrami identity the Hamiltonian becomes the constant. So, this is nothing but the Beltrami identity.

(Refer Slide Time: 29:59)
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And the seocnd condition is if the final time tf is free and not specified, the Hamiltonian does not
explicitly depend on time t then we have H

(
x̄?, ū?, λ̄?

)
= 0 for all t ∈ [t0, tf ] .

Now we are going to continue our discussion on this constrained optimization by looking at another form
of the optimal control equations and then we will look at some examples.
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