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The final step is we use Hamiltonian formulation.
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Step 7 : we use alternative Hamiltonian formulation or introduce the Pontryagin H function. So, the H
evaluated at optimal condition is

H? = V (x̄?, ū?, t) + λ̄?f (x̄?, ū?, t)

Then, we have to change Lagrangian to the Hamiltonian description. So, notice that Lagrangian can be
written in the form of a Hamiltonian as foloows :

L? = H? (x̄?, ū?, λ?, t) + ∂S
∂x̄ |x̄? ˙̄x+ ∂S

∂t |x̄? − λ̄ ˙̄x? (F)

Then, recall that S is terminal cost function and then write down all constraints from the Lagrangian
form to the Hamiltonian form. So, the control constraints in terms of Hamiltonian becomes

∂L
∂ū |x̄? = ∂H

∂ū |x̄? = 0 (B’)

we see that u only appears in H, so that change is quite simple.The Euler-Lagrange equation is changed
as follows. Notice that the original E.L. equation in terms of the Lagrangian was the following:

∂L
∂x̄ −

d
dt

(
∂L
∂ ˙̄x

)
|x̄? = 0

All we need to do is plug in L in the form of H and we get the following expression:

∂H
∂x̄ |x̄? + ∂2S

∂x̄2 |x̄? ˙̄x+ ∂2S
∂x̄∂t |x̄?− d

dt

[
∂S
∂x̄ |x̄? − λ̄?

]
= 0 (A’)

Now, this is after taking into account whatever variables are appearing. And then since circled quantity
is the total time derivative, we use chain rule to make it a partial time derivative. So, the quantity
d
dt

[
∂S
∂x̄ |x̄? − λ̄?

]
reduces to ∂2S

∂x̄2 |x̄? ˙̄x? + ∂2S
∂x̄∂t −

˙̄λ?

And after cancel out some similar term we get the following :
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∂H
∂x̄ |x̄? = − ˙̄λ?

Notice that Euler-Lagrange equation has reduced to an extremely simple form and finally, I complete
the system by introducing co-state equation and the boundary condition.

(Refer Slide Time: 06:00)
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So, co-state equation ∂L
∂λ̄

= 0 is reduced to

∂H
∂λ̄
|x̄? = ˙̄λ? (C’)

Now the natural boundary condition reduces to the following form:[
H? + ∂S

∂t

]
δtf +

[
∂S
∂x̄ |x̄? − λ̄?

]
δx̄f = 0 (E’)

So, we have completed the description of the solution of this optimal control problem, we can again
simplify problems into various sub-cases depending on whether our boundary points are fixed or variable.
So, let me describe some of the simplified cases. So, different cases of boundary condition are as follows
:

(a) Fixed time point and fixed state variables. Notice that, in our setup, we never change our initial
reference point whether it is the optimal curve and whether it is the perturbed curve, it always starts
with the same starting point. But let us say my first case is fixed final time so, tf does not change and
fixed final state which means that final point does not change.

And which means that natural boundary condition is trivially satisfied because δtf = 0 and δxf = 0
both variations are 0. The only conditions that we are going to get is the fixed point boundary conditions
itself. So, x̄ (t0) = x̄0 and x̄ (t1) = x̄1 . Then the next condition that we can describe is, it is fixed final
time but variable final state which means that tf = 0, the variation in time is 0, but the variation in the
final state variable is not.

(Refer Slide Time: 09:44)

(b) Free final time but fixed final state. So, we have δxf = 0 ; δtf 6= 0 . Let me just draw the diagram
of this situation. So, let us say, this is time point t0 and time point tf and initial curve is let us say the
following. This is x?, and x? changes in such a way that final state does not change. But, let us say new
perturbed quantity is tf + δtf . So, the final time changes but the final state does not change. In that
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case, δtf 6= 0 which means our natural boundary condition kicks in and we get the following H?+ ∂S
∂t = 0

which is the coefficient of δtf . Also we have the condition x (tf ) = xf that needs to be satisfy.

(c) Free final state and fixed final time the other way around . Let me draw the diagram in this situation
again we fix t0 and tf and we get x? and we have free final state, the other way around, but fixed final
time and I see that this is the scenario.So, we have xf and xf + δxf . In this scenario we have that
δxf 6= 0 and natural boundary condition kicks in and we get ∂S

∂x̄ |x̄? − λ̄? = 0 .

(d) Free final time but dependent free final state and we see that this is also going to be x (t) and t
here from t0 to tf but now my curve moves along in such a way that the perturbed curves moves along
in such a way that it follows a curve. So, let us say this is x? + δx and perturbed curve is θ (t) , where
final point on the optimal curve and the perturbed curve lies. Suppose, final time point tf and the state
variable x (tf ) are related such that x (t) lies on θ (t) .

(Refer Slide Time: 15:09)

We see that x (tf ) = θ (tf ) and δxf ≈ θ̇ (tf ) δtf where the (.) represents a derivative with respect to t .
Then natural boundary condition will kick in and we get[

H? + ∂S
∂t |x̄? + ∂S

∂x̄ − λ̄ |x̄? θ̇ (t)
]
δtf = 0

(e) Free final time and independent free final state. If tf and x̄ (tf ) are not related which means neither
δtf 6= 0 nor δxf 6= 0 .So, natural boundary condition will give us

H? + ∂S
∂t |x̄? = 0

∂S
∂x̄ − λ̄ |x̄? = 0

These are all the steps that I had to mention, let us summarize all these steps, especially the steps via
the Hamiltonian formulation, which is the easier out of the two methods.
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Summary of the Pontryagin procedure or the Bolza problem :

Statement : Given

Plant condition ˙̄x = f (x̄, ū, t)

and performance index J = S (x̄f , tf ) +
∫ tf
t0
V (x̄, ū, t) dt

and the boundary conditions x̄ (t0) = x̄0 ; x̄ (tf ) = x̄f which may or may not be free. Generally,
we fix the initial boundary condition. We have to find the optimal control which is given by ū? . The
solution summary is as follows :

Step 1: We find the Pontryagin H - function.

H (x̄, ū, λ, t) = V (x̄, ū, t) + λf (x̄, ū, t) , that is Hamiltonian.

Step 2 : we are going to minimize the Hamiltonian with respect to the control. Notice that we are writing
the word minimize although we are taking the first derivative and the reason being we are dealing with
all about convex functions, we have seen that when functions are convex our extremum is going to give
us minimum. So, minimize H with respect to ū by setting ∂H

∂ū |x̄? = 0 . From this condition, I am going
to get the optimal value of u which is ū? = h (x̄, λ, t)

(Refer Slide Time: 21:00)
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Step 3 : From step (1) and (2), find the optimal Hamiltonian H? by substituting u?.

Step 4 : Once we have the optimal Hamiltonian we set up constrained equation, we have the state

equation ˙̄x? = ∂H
∂λ̄
|x̄? and co-state equation ˙̄λ? = −∂H∂x̄ |x̄? and initial condition is x̄ (t0) = x̄0 and

boundary condition is given by

H? + ∂S
∂t |tf δtf + ∂S

∂x̄ − λ |x̄? |tf δxf = 0

And finally, after solving all 2n + 1 equations, notice that these are n vector equations, but first order
and these are another n equations. So, we are solving 2n + 1 equations, the last one is this boundary
condition.we have found all the variables the state and the co-state and then we plug it back into step
(2).

Step 5 : Substitute x̄?, λ? into step (2) to get ū? , which is the optimal control.

One final point of discussion in the solution methodology is how about the sufficient condition? We have
described the necessary condition for finding the optimal value. To find the sufficient condition we have
to look at the sign of the second variation, but we are dealing with convex functions so the Hessian of
the second variation will always be positive definite. The only thing that we have to check is a relation
very similar to the strengthened Legendre condition. So, the sufficient condition is we have to look at
the sign of second variation of

δ2J =
∫ tf
t0

[
∂2H
∂x̄2 (δx̄)

2
+ ∂2H

∂ū2 (δū)
2

+ 2 ∂2H
∂ū∂x̄δūδx̄

]
dt

we can write it in the form of the Hessian matrix.

δ2J =
∫ tf
t0

[
δx δu

] [
∂2H
∂x̄i∂ūj

]
ij

[
δx
δu

]
So, I have written the above expression in a more compact notation, and let me call

[
∂2H
∂x̄i∂ūj

]
as a matrix

A.This is going to be positive definite, which is certainly the case.
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The matrix A is positive definite because our function H is convex. This is the general optimal control
setup we take convex functions. And, the only thing that we have to check is the second partial derivative,

given by ∂2H
∂u2 > 0 .So, all we need to do is check whether the sign of this partial derivative is positive or

not and this is very similar to strengthened Legendre condition.
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