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Now I am going to branch out and discuss an application of the calculus of variations namely, the
application in Optimal Control Theory. We will see that in this example more often than not we are
going to deal with functionals which has convex integrands. So, solving problems in optimal control
theory will be a subset of whatever we have seen so far in terms of optimizing a functional.
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Calculus of variation in optimal controls (OC): So, what is this optimal control? It is a branch of applied
mathematics with deals with finding a control law for a dynamical system over a period of time such
that an objective function is optimized.

An example is as follows :The dynamical system could be spacecraft and objective function could be to
reach moon from the planet earth with minimum fuel consumption and the controls are the switches in
the spacecraft for example the rocket thruster.

Another dynamical system could be the nation itself, and let us say the objective function is to reduce
unemployment and the controls could be the monetary and the fiscal policy which means the current
topics of reducing unemployment in our country could possibly be tackled with our optimal control
setup. So, let us now formalize our definition in the form of a mathematical statement. So, formal or
mathematical statement: The OC problem is to find the optimal control u? (t), ( where (?) denote the
optimal or extremal functions) which causes the linear or non-linear time invariant system.The system
is denoted by the ODE

˙̄x = f [x̄, ū, t] (1) (Plant)

to give the state x̄? x that optimizes the general Performance Index (PI).
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And, the Performance Index is given by the functional

J (y) = S (x̄ (tf ) , tf ) +
∫ tf
t0
V [x̄ (t) , ū (t) , t] dt (2)
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Notice that in the mathematical terms, we are trying to optimizing the functional given by (2) subject to
a non-holonomic constraint given by (1). So, we have to find these functions u given the constraints (1)
so that the objective function (2) is optimized. So, this is our performance index with some constraints
on the control variable ū (t) and/or x̄ (t) such that the final time tf may be fixed or it is free. And
the final state is denoted by x̄ (tf ). So, we have basically introduced some physical terms so far in
our calculus of variations notations here. Now , objective function is denoted by Performance Index,
PI, and constraint is denoted by plant condition which is a non-holonomic constraint or the differential
constraints. So, the OC problems are going to be studied in three stages. We will see that the step by
step solution methodology follows very similar to the solution methodology of constraint optimization
with non-holonomic constraints.

Stage 1 : We have to find the unconstrained optimal solution to the objective function (2) using calculus
of variations.

Stage 2 : We are going to bring the system (1) and address the problem of finding the optimal control
u? (t) which drives (1) and optimizes the objective function (2).

Stage 3 : We impose constraints on controls and states to obtain optimal control solutions.

So, let us see what is this 3 stage solution methodology, but before that let me reduce the Performance
Index in a form that we are familiar with.
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We are going to look at the solution of optimal control problems purely using variational techniques.
Because this is a course on calculus of variations and not optimal controls. We note the following:∫ t1

t0
d

dxS (x̄, t) dt = S (x̄f , tf )− S (x̄0, t0) (3)

In physical terms, the function S is known as the cost function. This objective function was introduced
in 1913 by a Russian mathematician named Bolza. So, when we introduced this objective function
including the cost function S (x̄ (tf ) , tf ) is also known as the Bolza problem.

Then use (3) and write down the modified performance index or the objective function

J2 [ū (t)] =
∫ t1
t0

{
V (x̄, ū, t) + dS

dt

}
dt = J (ū (t))−S (x̄ (t0) , t0) (4)

Now we have absorbed the cost function inside the integral, but it turns out that this functional is slightly
different from our original objective functional or the performance index.

Now, notice that the objective function J and J2, they only vary by a constant which means that the
optimal solution to J will be identically equal to the optimal solution to J2. So, the optimal solution to
J and J2 are equivalent and hence the optimal control problem can either be found from optimizing J
or J2. But the optimal cost is found using J .

And also further note that d
dt [S (x̄, t)] = ∂S

∂x̄
˙̄x (t) + ∂S

∂t ,the dot represents the time derivative. Now I am
going to highlight the 3-stage methodology of the solution to the optimal control problem in a step by
step format.
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So, steps for solving optimal control problems via the calculus of variations. we will see that if we follow
the step by step methodology, then almost all the problems in this topic are going to be solvable.

Step 1: We assume optimal conditions which means we assume the optimal values x̄? and ū? for the
state variables and for control variables respectively.

J (ū?) = J2 (ū?) =
∫ tf
t0

[
V (x̄?, ū?, t) + dS(x̄?)

dt

]
dt

Step 2 : We take variations of the control and the state variables. Let us fix one point x̄ (t0) = x̄0. So,
let the perturbed state and control variables are as follows:

x̄ (t) = x̄? (t) + δx̄ (t)

ū (t) = ū? (t) + δū (t)

So,plant condition (1) reduces to the following for the perturbed variable:

˙̄x? + δ ˙̄x = f [x̄? + δx̄, ū? + δū, t]

The objective function which is performance index is now written in the form:

J (ū) =
∫ tf+δtf
t0

[
V [x̄? + δx̄, ū? + δū, t] + dS

dt

]
dt

And finally, we are going to solve this constraint problem by introducing the Lagrange multiplier function
also known as the co-state vectors.

(Refer Slide Time: 23:01)
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Step 3 : Introduce time invariant system (1) which is plant condition as a constraint via the Lagrange
multiplier say λ̄ (t) also known as the co-state vector. So, that is Lagrange multiplier function. Let me
introduce the augmented performance index at optimal conditions are given by

Ja [ū?] =
∫ tf
t0

[[
V [x̄?, ū?, t] + ∂S

∂x̄ |x̄? ˙̄x? + ∂S
∂t |x̄?

]
+ λ (t) {f (x̄?, ū?, t)− ˙̄x?}

]
dt

The perturbed augmented performance index about (x̄?, ū?) can be written as follows:

Ja (ū) =
∫ tf+δtf
t0

[
V [x̄? + δx̄, ū? + δū, t] + ∂S

∂x̄ |x̄? [ ˙̄x? + δ ˙̄x] + ∂S
∂t |x̄? + λ (t) {f (x̄? + δx̄, ū? + δū, t)− ˙̄x? + δ ˙̄x}

]
dt

We have already seen the difference of the perturbed value with the original or the extremal value. And
then from here, we will look at what is the first variation from this difference and we find the optimal
control solution ū? and the state variable x̄?.
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