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Now, one last topic of discussion that remains in the analysis of the second variation is that what are
the saddle points. See we have touched upon the topic of the extrema being maxima or minima, but
how about an extrema of being a saddle points. So what is the criteria of detecting saddle points? The
answer lies in extending Morse lemma from the finite dimensional to the infinite dimensional case namely
the solution lies in determining what is the Morse index for the infinite dimensional function space.

(Refer Slide Time: 00:55)

So let us look at the saddle points. The presence of conjugate points implies that the functional J neither
has maxima nor has minima.

Question : Is it possible to classify extremals with conjugate points in a manner similar to the finite
dimensional case for saddle points.

What did we do for finite dimensional case for saddle points, we looked at the Morse lemma and we
calculated the Morse index, if the index is not one of the extremals, that is λ = n or λ = 0 in the finite
dimensional case then we are guaranteed to have saddle points. So recall, the Morse lemma for the finite
dimensional case. It counts the number of negative signs in the canonical representation of f near the
point x0.

In the infinite dimensional case, let ′y′ be an extremal of the functional ′J ′ and let δ2J : H ×H → R be
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the second variation, where H is Hilbert space.

It implies that the Morse index of the extremal ′y′ of ′J ′ is the maximal dimension of the subspace H on
which the second variation δ2J is negative definite.

(Refer Slide Time: 07:17)

The multiplicity of κ, which is conjugate to x0 is the number of linearly independent solution ′u′ to the
Jacobi accessory equation satisfying u (x0) = u (κ) = 0 where κ 6= x0.Since the Jacobi accessory equation
is a second order ODE, so multiplicity of a conjugate point κ under consideration cannot exceed 2. So
we are ready to discuss a major result by Morse for infinite dimensional case.

This is described in the form of a theorem or the Morse index theorem for the infinite dimensional
dimension function space. It says that suppose ′y′ be an extremal for the functional ′J ′ and the index λ
of the second variation δ2J is equal to the number of points in (x0, x1) conjugate to x0 and this index is
finite.

Let me highlight the importance of this result with a example. Recall, our example J (y) =
∫ l

0

(
y′2 − y2

)
dx

and assume that l = 7
2π so certainly it is bigger than π. Now note that one of the solution to the Jacobi

accessory equation is u1 = sinx and we saw that for this solution the point κ = π, 2π, 3π are all conjugate
to the point x0 = 0 which means that Morse index λ = 3 . So that is how we use theorem by Morse
in the infinite dimensional function space. So certainly if the Morse index is 0, we are guaranteed to
get a minima and if the Morse index is ∞ then we are guaranteed to get maxima. So the Morse index
guarantees the existence of either saddle points or the local minima.Now, I am going to talk about a
specific class of functionals, this is the last topic on the theory of calculus of variations namely the case
where our integrands in the functional are convex or they are of certain characteristics. We will see that
the extremals that we get for these class of functions are local minima or minima.
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(Refer Slide Time: 13:49)

We are now going to focus our attention on convex integrands to the functional let me call this as CI. So
as I just said for convex integrands there is a sufficient condition for a minimum not involving conjugate
points. Essentially the extremal will be a minimum for convex integrands. So let me just revise the
basics of convex functions or convex sets from our finite dimensional case. So, revise convex functions in
Rn.

We are going to restrict our attention only to R2 and similar ideas are extended to R3,R4 and so on,
higher dimensions. A set Ω ⊆ R2 is convex if a line segment between two points z̄1, z̄2 ∈ Ω also lies in Ω.
So what I just said is the following, if the point z̄1, z̄2 ∈ Ω, then

ω (t) = (1− t) z̄1 + tz̄2 ∈ Ω ∀ t ∈ [0, 1]

Examples of convex set are the set R2,
{

(y, ω) ∈ R2 : y2 + ω2 < 1
}

,
{

(y, ω) ∈ R2 : |y| < 1, |ω| < 1
}

. So
these are some of the examples which are all convex. Now, I describe what are convex functions.

A function f : Ω→ R2 is convex, if

f [ω̄ (t)] = f [(1− t) ¯z1 + tz̄2] ≤ (1− t) f (z̄1)+tf (z̄2) (r1)

So then we can use certain results for example the mean value theorem to arrive at certain other relations.

(Refer Slide Time: 19:45)
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The mean value theorem for convex function says that ∃ a number τ ∈ (0, t) such that

f (ω̄ (t)) = f (z̄1) + t (z̄2 − z̄1) .Ōf (ω̄ (τ)) (r2)

Since functions f and Ōf are smooth, that is the derivatives are continuous and the function itself is
continuous and τ ∈ (0, t), it implies that

limt→0 Ōf (ω̄ (τ)) = Ōf (z̄1) (r3)

Because recall that ω̄ (τ) = z̄1 + τ (z̄2 − z̄1). Using (r3) in (r1) I arrive at the following relation

(z̄2 − z̄1) .Ōf (z̄1) ≤ f (z̄2)− f (z̄1) (r4)

Further if we are talking about the functions in finite dimensional space in R2 and we know that a point
z is a critical point provided the gradient vanishes. Suppose that z1 is a critical point or I am saying
that Ōf (z̄1) = 0, then f (z̄1) ≤ f (z̄2) from condition (r4) or the point z̄1 is the local minima.

It is always going to be the minimum compared with the function values at other points in its neighbor-
hood. So which means that any extremal for a convex function will be a local minimum. We can extend
this same idea for functional optimization where our integrands of the functional are convex functions.
So, let us continue the extension of this finite dimensional case to the functional case.

Consider J (y) =
∫ x1

x0
f (x, y, y′) dx and suppose Ωx =

{
(y, y′) ∈ R2 : (x, y, y′) ∈ Df : domain of f

}
is

convex set and further f : Ωx → R is also convex.

(Refer Slide Time: 26:33)

For any points (y, y′) ; (ŷ, ŷ′) ∈ Ωx, by (r4) I have the following inequality

f (x, ŷ, ŷ′)− f (x, y, y′) ≥ (ŷ − y) fy (x, y, y′) + (ŷ′ − y′) fy′ (x, y, y′)

The 2 dimensional gradient operator is O =
(

∂
∂y ,

∂
∂y′

)
. So that is how we are getting this result. And
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from here,

J (ŷ)− J (y) =
∫ x1

x0
[f (x, ŷ, ŷ′)− f (x, y, y′)] dx ≥

∫ x1

x0
[(ŷ − y) fy + (ŷ′ − y′) fy′ ] dx

Suppose y ∈ S is an extremal and ŷ ∈ S is the perturbation of y. Now, we do integration by parts and
we have the following

J (ŷ)− J (y) ≥ (ŷ − y) fy′ |x1

x0
+
∫ x1

x0
(ŷ − y)

[
fy − d

dxfy′
]
dx

Since y and ŷ both lie in S, so it must satisfy the endpoint conditions. So this means y (x0) =
ŷ (x0) , y (x1) = ŷ (x1). Since y is an extremal then it leads to the condition that the solution to
this equation inside the bracket, which is the Euler Lagrange equation will be 0. So , we have found that

J (ŷ)− J (y) ≥ 0 or J (y) ≤ J (ŷ)

Or the extremal ′y′ is a local minimum of J. So that is the conclusion that we can right away derive
from our finite dimensional case. So the analysis becomes very easy when we are dealing with convex
integrands. After few minutes, I am going to introduce a topic in optimal controls where we are exactly
going to discuss convex integrands. So let us wrap up this section by providing some results and give
some examples on how to solve optimization for convex integrands.

(Refer Slide Time: 32:34)

I have two theorems the first says that suppose for each point x ∈ [x0, x1] the set Ωx is convex and
suppose f is also a convex function of (y, y′) ∈ Ωx. If ′y′ is a smooth is a smooth extremal of ′J ′ then ′J ′

j has a minimum at y for fixed endpoint problem.

The second result says that Let Ω ⊆ R2 be a convex set and f : Ω→ R has continuous first and second
order partial derivatives then f is convex iff ∀ (y, ω) ∈ Ω we have

fyy (y, ω) ≥ 0 ; fωω (y, ω) ≥ 0 ; fyyfωω − f2yω ≥ 0

we call fyyfωω − f2yω by ∆.So let me wrap up this discussion by looking at few examples, we are going
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to revisit our examples of the geodesics on a plane. Let us consider the geodesic example on a plane.

Let J =
∫ x1

x0

√
1 + (y′)

2
dx and we have to check whether the integrand is convex or not, then only we

can conclude something. So, f = 1 + (y′)
2

and we see that fyy = fyy′ = 0 and fy′y′ = 1

[1+(y′)2]
3
2

and of

course fy′y′ > 0 for any value of the derivative y′.

We can see that these condition satisfy convexity conditions, it implies that f is convex. The result from
this statement that f is convex implies that the extremal that we find which is the straight lines will be
local minima. So, from the previous theorem I can see that y = mx+ c which is the solution to the Euler
Lagrange equation are curves of shortest arc length or they are the minimal extremal to the functional
J .

(Refer Slide Time: 37:54)

Let us look at one or two more examples. Another example that I have is that of the catenary. In this

case integrand is of the form f = y

√
1 + (y′)

2
.Then fyy = 0 , fyy′ = y′√

1+(y′)2
. And I see that in this

case it does not matter whatever is fy′y′ but discriminant ∆ < 0 if y′ 6= 0 which means that f is not
convex . We have seen that one of the extremals that we find for the catenary problem does not give
either a minima or maxima.

So from our previous lecture, we found conjugate points guaranteeing the extremal not being a minima
or maxima for the extremal. And then finally here is one more example. I consider the integrand of the
form f = (c1y − y′ − c2)

2
; c1 and c2 are non-zero constants. Let me Ωx = R2 so I know that the

subset is convex, I have to check whether f is convex or not. Notice that

fyy = 2c21 > 0 , fy′y′ = 2 > 0 , fyy′ = −2c1 6= 0

From all these derivatives, I can conclude that discriminant ∆ = 0. But fyy and fy′y′ are positive
implying that f is convex. And further f is convex or the extremal of fixed point problem given by
J (y) =

∫ x1

x0
fdx is a minima. So that is how we typically solve problems with convex integrands. That

concludes my discussion on all about the theory of calculus of variations.
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