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Further, f (x̄) is a local maximum if either ∂2f
∂x2

1
< 0 or ∂2f

∂x2
2
< 0. And it is a local minimum, if either

∂2f
∂x2

1
> 0 or ∂2f

∂x2
2
> 0. So, that concludes our second derivative test. There is one final statement suppose

the discriminant ∆ = 0, then our second derivative test fails.So x̄ is a degenerate stationary point and
the nature this point x̄ is determined by higher order terms. Let us say, cubic terms and so on, because
no longer we are able to determine the nature of the extremal just by looking at the quadratic term. So,
we can continue our discussion for functions of several independent variable.

I am just going to briefly state the result. So, for functions of three or more, three or more independent
variables I see that my stationary points are found by ∇̄f = 0 and the sign of f

(
ˆ̄x
)
− f (x̄) is controlled

by quadratic terms in the Taylor’s expansion Q (η) = ηTH (x̄) η . So the quadratic terms are governed by
this, this product. The sign of this product will tell us the nature of the extremal, where is the so-called
Hessian matrix.

And I am sure students are familiar with this matrix. This is of the form H =
[

∂2f
∂xi∂xj

]
ij

.
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So, suppose Hessian matrix H is definite matrix then the function f has a local extrema at (x̄). And
suppose H is indefinite matrix, then(x̄) is a saddle point, and further we can classify the first statement
namely if H is positive definite, then we expect that the local extrema is minima. And if it is negative
definite, then the local extrema is the maxima.

So, we can write down these further results. So then, I am going to end my discussion on this finite
dimensional calculus by providing two results, which are of extreme importance, specially when we
discuss our optimization of functional calculus. The first result is in the form of the Morse Lemma which
tells us how to distinguish between the saddle points, the local maxima and the local minima in the
neighborhood of extrema.

This is Lemma 3 . Lemma 2 was introduced in lecture 2. So the Morse Lemma says the following:
Suppose x̄0 is a non-degenerate stationary point for a smooth function f, then there exists a smooth
invertible coordinate transformation xj → xj (v̄) where v̄ = (v1, ..., vn) is defined in a neighborhood
N (x̄0) of x̄0 such that

f (x̄) = f (x̄0)− v21 − ...− v2λ + v2λ+1 + ...+ v2n

holds throughout N (x̄0) , where λ is the index of the point x̄0. Now, what is the significance of λ?

Consider v21 + ...+ v2λ − v2λ+1 + ...− v2n we call this as the Morse λ− saddle. Now, specifically if λ = n,
which means that all the terms are being subtracted v1 to vn, then what do I expect? I expect that x̄0
is a local max. Any function value at any point other than x̄0 in the neighborhood of x̄0 will be lower
than the functional value at x̄0.
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So the conclusion here is if λ = n, then I see that Morse saddle is , a local maxima. And on the other
hand, if λ = 0 then Morse saddle is a local minima. The functional value at x̄0 is the lowest possible
value among all such point x in the neighborhood of x̄0 in the second case. So, then I end my discussion
by now stating a result in the form of a theorem.

The theorem is known as the Sylvester criteria. So essentially this criteria tells us about the condition
for which a matrix, let us say the Hessian matrix is, when is it positive definite or when is it negative
definite.The conditions under which the quadratic form is definite.

The statement says, let X̄ = (x1, x2, ..., xn) and let An×n = [aij ]n×n denote a symmetric matrix. So the

Sylvester criteria says that a necessary as well as sufficient condition n for the quadratic form XTAX
to be positive definite, is that every principal minor of the det (A) is positive. In particular,det (A) > 0
itself is positive and, all diagonal elements ajj > 0. So that is a Sylvester criteria for finding the positive
or the negative definiteness of the matrix and we now have the sufficient background to look at the
optimization of functionals.
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So let me now briefly start with the basic definition. So the major description will come in our next
lecture. I am going to look at the basic fixed point functionals, well, functionals. we are seeking
smooth functions y : [x0, x1] → R such that y (x0) = y0 and y (x1) = y1 and such that the extremal
J (y) =

∫ x1

x0
fdx has an extremum at y.

We continue our discussion with the standard perturbation argument. So assume a perturbation of the
form

ŷ = y + εη

where ε > 0 e and η is smooth function and then use Taylor series integrand of f .We get

f (x, ŷ, ŷ′) = f (x, y, y′) + ε
[
η ∂f∂y + η′ ∂f∂y′

]
+ ε2

[
η2 ∂

2f
∂y2 + 2ηη′ ∂

2f
∂y∂y′ + (η′)

2 ∂2f
∂y2

]
+O

(
ε3
)

So variation in the functional is

J (ŷ)− J (y) = εδJ (η, y) + ε2

2 δ
2J (η, y) +O

(
ε3
)

Notice that we have only written up to second order. I know that this is my standard first variation. We
have done a lot of problems on the first variation, so we do not worry about it.
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Let us now look at the second variation. So second variation of this functional is of the form

δ2J (η, y) =
∫ x1

x0

[
η2fyy + 2ηη′fyy′ + (η′)

2
fy′y′

]
dx

We integrate by parts. And we get

δ2J (η, y) =
∫ x1

x0

[
η2
[
fyy − d

dx (fyy′)
]

+ (η′)
2
fy′y′

]
dx

Then we will show that the sign of this second variation completely depends on the sign of this quantity.
Let me also quickly introduce sets S and H.

S =
{
y ∈ C2 [x0, x1] : y (x0) = y0 and y (x1) = y1

}
H =

{
η ∈ C2 [x0, x1] : η (x0) = η (x1) = 0

}
Now I need to connect the sign of the second variation with the location of the maxima or the minima.
The next result, theorem 23, exactly does that.

Suppose J has a local extremum at y ∈ S , then if δ2J ≥ 0 then y is a local minimum ∀η ∈ H and if
δ2J ≤ 0 then y is a local maximum ∀η ∈ H

So, that is the relation between max and min and the sign of the second variation. When we eventually
calculate the second derivative we have to look at the definiteness or the semi definiteness of Hessian
matrix, which is involved in this setup.
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Now, I am going to finally end this topic here by stating one of the very vital results known as the
Legendre condition. So, this is the first result that I am going to state in order to determine the sign of
the second variation. So, the idea is to determine the sign of δ2J . Because once we know the sign, we
can immediately say whether the extremum involved is maxima or minima.

The Legendre condition exactly does that. The Legendre condition says the following : Let us assume
that J is a functional which is the basic fixed point functional that we have began with, and integrand f
is a smooth function. When I say smooth, this is continuously differentiable up to second order function
of (x, y, y′) .

Suppose, suppose J hasa local minimum in S at y, then fy′y′ ≥ 0 ∀x ∈ [x0, x1] . So fy′y′ is a crucial
quantity whose sign needs to be checked to determine whether we have found a local minimum or not.
Again, the proof is not going to be shown here.

And for the complete proof, I am going to refer the following text, Calculus of Variation by Bruce van
Brunt that we are also following in this course. This is the book published by Springer 2004. Let us
quickly look at an example of the application of Legendre condition. Consider a functional of the form

J (y) =
∫ 1

−1 x
√

1 + y′2dx

We see that fy′y′ is given by the following:

fy′y′ = x

(1+y′2)
3
2

Now fy′y′ changes sign in the interval x ∈ [−1, 1]. The denominator is always positive, but the numer-
ator changes sign and students are asked to check the solution to the Euler-Lagrange equation for this
functional is not a minimum. And this Legendre condition guarantees because the sign changes.
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We will end this discussion by giving one more example of the Catenary. So recall, in our Catenary
problem, we will look at the unconstrained problem. So, in the Catenary problem

f (x, y, y′) = (y − λ)

√
1 + (y′)

2

And let me quickly evaluate this Legendre derivative

fy′y′ = y−λ
(1+y′2)

3
2

Notice that the sign of y−λ determines the sign of fy′y′ and if people recall that y−λ being the extremal,
they recall that the solution in this case was

y − λ = 1
2ξ̂

cosh
[
ξ̂ (2x− 1)

]
.

So this is extremal solution coming from Euler-Lagrange equation. Since cosh is always non-negative,
so the sign of y − λ is completely determined by the sign of ξ̂. So students are asked to check that the
positive root gives us the minima.

And that is confirmed by the Legendre condition.In the next lecture, we will begin with that Legendre
condition is not going to be sufficient in determining whether a extrema is maxima or minima.
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