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So, the example is number 3 here. So the example I have is that of the Lagrangian for the Kepler’s
problem. So for the Kepler’s problem, my Lagrangian is as follows:

L (t, q̄, ˙̄q) = m
2

[
q̇1

2 + q̇2
2
]

+ K√
q21+q22

where m is positive and k is a constant.

So, I have to set up my condition (1′) to find the infinitesimal generators. So, we have to find (ξ, η1, η2)
infinitesimal generators for the variational symmetry. So again, to set up the prolongation operator, let
us calculate some of these partial derivatives. So ,

∂L
∂t = 0 ; pk = ∂L

∂q̇k
= mq̇k ; ∂L

∂qk
= − qkk

(q21+q22)
3
2

So, prolongation operator in this case is

pr1v̄ (L) = η1
∂L
∂q1

+ p1

[
η̇1 − ξ̇q̇1

]
+ η2

∂L
∂q2

+ p2

[
η̇2 − ξ̇q̇2

]
So plug in all the quantities and write down the expression.
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So, after plugging in all the quantities, I get the following expression:

pr1v̄ (L) = k η1q1+η2q2

(q21+q22)
3
2

+m
[
η̇1q̇1 − ξ̇q̇1

2 + η̇2q̇2 − ξ̇q̇2
2
]

+m
[
−q̇1

3ξ1 − q̇2
3ξ2 − q̇1

2q̇2ξ2 − q̇1q̇2
2ξ1 + q̇1

2 (η1,1 − ξt) + q̇2
2 (η2,2 − ξt) + q̇1q̇2 (η1,2 + η2,1) + q̇1η1,t + q̇2η2,t

]
(A)

Also we need to check

Lξ̇ = m
2

[
q̇1

3ξ1 + q̇2
3ξ2 + q̇1

2q̇2ξ2 + q̇1q̇2
2ξ1 + q̇1

2ξt + q̇2
2ξt
]
+ k√

q21+q22
[ξt + q̇1ξ1 + q̇2ξ2] (B)

So I have to add A and B and equate the various powers of q̇1 and q̇2. I am going to get the following
relations.

(Refer Slide Time: 07:51)
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η1,1 − ξt
2 = 0 (a)

η2,2 − ξt
2 = 0 (b)

η1,2 + η2,1 = 0 (c)

η1,t = 0 (d)

η2,t = 0 (e)(
q2
1 + q2

2

)
ξt − (η1q1 + η2q2) = 0 (f)

From A, we see that, coefficients of q̇1
3/q̇2

3are 0 and what I get is ξ1 = ξ2 = 0 or I get that ξ = ξ (t) is
purely a function of t.

From,(d) and (e), I see that

ηk = ηk (q̄) (g)

From (a) ,(b) and (g) we get there exixt a constant c1 such that

ξt = 2c1 ; η1,1 = η2,2 = c1

So, from here we can conclude several things. First of all ξ must be a straight line. And we can continue,
but most important notice this relation.

(Refer Slide Time: 11:25)
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So, from that relation I can immediately get that

η1 = c1q1 + g (q2) ; η2 = c1q2 + h (q1)

use relation (c) , I see that

∂g
∂q2

+ ∂h
∂q1

= 0

one is a function of q2, the other is a function of q1 and both equated to 0, implies both are constants
implies

∂g
∂q2

= − ∂h
∂q1

= c2

So, I can integrate this relation. And from here I get that

η1 = c1q1 + c2q2 + c3

η2 = c1q2 − c2q1 + c4

Finally, if I use my condition (f), I plug in the last relation and I get that

c1
[
q2
1 + q2

2

]
− c3q1 − c4q2 = 0.

And if I were to equate this, I get that

c1 = c3 = c4 = 0

So all I get is that is

η1 = c2q2 ; η2 = −c2q1

And finally, from all these observations, we can also get that ξ which was originally we found to be a
function of t, comes out to be purely a constant say c5 that is ξ = ξ (t) = c5. So that comes from these
set of relations that we have been using. So, students should check that. So what is the conclusion here?
Notice that the way the infinitesimal generators are found, this is nothing but the rotational generators.
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So η1 depends on q2, η2 depends on q1, provided constants c1, c2 are non-zero. So the conclusion is, we
have two parameter family of variational symmetry. So, what have we got is that if c2 = 0 and c5 6= 0 I
can only get a time translational symmetry, there is no rotation. So this is time translation or translation
in t. Now, on the other end if c2 6= 0 and c5 = 0 then I have a pure rotational transformation. So, what
have we found? That, in the Kepler’s problem, the only variational symmetries, are linear combination
of rotation and time translation.

(Refer Slide Time: 15:22)

So we end our discussion by concluding that we can continue finding these variational symmetries for
functionals containing integrand of higher order derivatives in a similar fashion. So let me write down
the result. For functional containing higher derivatives let us say up to nth order we calculate higher
prolongation.

We call this as prnv̄ (L). As we increase this n, as n becomes larger and larger, this becomes quite
complicated to find. So, I am not going to write the general form, but again, I will end the discussion by
mentioning what is a condition for existence of variational symmetries is prnv̄ (L) + Lξ̇ = 0 differential
equation needs to be satisfied.

So that is along the similar lines for functions with just first order derivatives. So, that completes our
discussion on finding the necessary condition for the extrema of a functional. I am now going to shift
my attention to calculate the second variation or to look at the sufficient condition for the existence of
the extrema, namely, if the extrema that we found, whether it is a maxima or a minima. So we start
our discussion on the second variation.

So,the idea is why is second variation topic is important, because so far we have looked at the various
forms of Euler-Lagrange. But Euler-Lagrange only provides the necessary condition for the existence
of the extrema. It does not provide the sufficient condition. So, it only provides a necessary condition
for the functional to have an extremum. And this is similar to first derivative, gradient test in infinite
dimensional space Rn.
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It is not a sufficient condition and specially to determine the nature of the extrema that we find. So
this statement is equivalent to saying that a vanishing the first derivative in the finite dimensional
calculus set equal to 0 is not a sufficient condition for the extrema. So, vanishing first derivative not a
sufficient condition for the extrema in Rn. So the moment the Euler-Lagrange does not provide us with
the sufficient condition, the natural idea is to look for the higher order terms in our variation of the
functional.

(Refer Slide Time: 20:02)

So we are going to look at the terms of the order of ∂2J . So the idea is we need to investigate next
term in the expansion of J (ŷ)−J (y) the variation, which will be our second variation of the functional.
What is the importance of the second variation? Because we will investigating the second variation will
not only provide us with a more refined necessary condition for the existence of extrema, it will also
provide us with the sufficient condition for specific cases.

So, it provides us with more refined necessary condition for local extrema and it also provides the
sufficient condition for y to be, to be a local extrema of J. So, all these statements that I am making
for the functional, I am just writing down the equivalent statement in the finite dimensional calculus, so
as if, our multivariate calculus is the guiding topic in investigating the second variation. So let us now
briefly touch upon the topics in multivariate calculus related to the second derivative test.

So, I am going to revisit our concepts in finite dimensional calculus, related to the second derivative
tests. So we will revisit finite dimensional case inR2. Let us consider a function f : Ω → R2 which is a
smooth function and let x̄ = (x1, x2). Let us say x is a extrema

Let us consider the perturbation in x ,ˆ̄x = x̄ + εη̄ where ε > 0 and η̄ = (η1, η2) ∈ R2. So, I can expand
my smooth function using Taylor series about some known point x̄ = (x1, x2) . Using Taylor series, I see
that

f
(
ˆ̄x
)

= f (x̄) + ε
[
η1

∂f
∂x1

∣∣∣
x̄

+ η2
∂f
∂x2

∣∣∣
x̄

]
+ ε2

2

[
η2

1
∂2f
∂x2

1
+ 2η1η2

∂2f
∂x1∂x2

+ η2
2
∂2f
∂x2

2

]
+O

(
ε3
)
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So let me write down this expansion in a shorthand notation, assuming that x̄ = (x1, x2) is an extrema.

(Refer Slide Time: 24:57)

Suppose f is stationary or it has an extrema at the point x̄ = (x1, x2). So , it means that ∇̄f (x̄) = 0 or
term in my Taylor series is set equal to 0 because this is nothing but < η̄, ∇̄f >. When ∇̄f = 0, this
term will be 0.

So, in that case

f
(
ˆ̄x
)

= f (x̄) + ε2

2 Q (η) +O
(
ε3
)

where Q (η) = η2
1
∂2f(x̄)
∂x2

1
+ 2η1η2

∂2f(x̄)
∂x1∂x2

+ η2
2
∂2f(x̄)
∂x2

2

So we see that for ε << 1 , the nature of the extrema will be completely determined by the sign of
function Q (η). So what I said is, for ε << 1 , the nature of the stationary point say max or min, will
be completely determined. The student should note that we are in finite dimensional calculus, whatever
results we are saying, we are saying it without proof, because the assumption is, the students who are
taking this course, have a background in vector calculus.

So they are requested to refer standard textbooks and we will see that all these results we state in vector
calculus will have almost parallel in functional calculus. So the , max or min is determined by the sign
by the lowest order non-zero derivative, at x̄ = (x1, x2) [that is, that is the sign of Q (η). So, it is all
about finding the sign of Q and how does it change?

We need to check where the Q sign changes. Since Q is a function which is a continuous function of this
vectorη and Q changes sign, which means that there will be a value of η where Q (η) = 0. So those are
the points that we need to evaluate.

So what I said is, since Q is a continuous function of η and Q changes sign it implies that there exists a
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value or there exists a function η 6= 0 such that Q (η) = 0 which means there exists a real solution for(
η1
η2

)2
∂2f
∂x2

1
+ 2

(
η1
η2

)
∂2f

∂x1∂x2
+ ∂2f

∂x2
2

= 0

So this is a quadratic equation for the unknown
(
η1
η2

)
.Then we have to worry about the discriminant

and see how the discriminant changes sign from here standard arguments in quadratic equation.

(Refer Slide Time: 30:53)

The nature of the solution (η1, η2) is determined by the discriminant

∆ = ∂2f
∂x2

1

∂2f
∂x2

2
−
(

∂2f
∂x1∂x2

)2

I call this delta to be discriminant. This is the standard quadratic equation solution theory. So the
theory says if ∆ < 0, we will not have a real solution and, and further one of the derivatives either
∂2f
∂x2

1
6= 0 or ∂2f

∂x2
2
6= 0 at x̄. So I see that this is a case where Q is indefinite. We would not get a real

solution for (η1, η2) and the conclusion in the terms of the extremum is that in this situation x̄ cannot
be an extremum since f

(
ˆ̄x
)
− f (x̄) depends on the choice of the function η.

So, in this case x̄ is also known as the saddle point. So then, the case that if ∆ > 0, we expect that there
is no real solution to the quadratic equation given by Q (η) = 0.

Which means that Q cannot change signs. And in other words, I say that Q is definite and the conclusion
from here is that x̄ is a local extremum and further, we can conclude few more results from this, that
this local extremum is maximum if one of the second derivatives of f with respect to either x1 or x2 are
negative and it is a local minimum if those derivatives are positive.

8

397


