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So, the example I have is, example number 8, is that of the Linear Harmonic Oscillator in 1-D, one
dimension. So,my H, the Hamiltonian given in this problem is the following:

H = 1
2m

[
p2 + ω2q2

]
And we need to find extremal. Clearly, the H is independent of the variable t which is the independent
variable.

So we look at the solution to reduced, Hamilton-Jacobi equation, which is nothing but, the reduced
Hamilton-Jacobi equation will be

H = 1
2m

[(
∂ψ
∂q

)2
+ (ωq)

2

]
= α (*)

So, we have to solve this equation, so, to find ψ. So let me call this as, as my star.

(Refer Slide Time: 02:02)
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So from star, I see that

∂ψ
∂q =

√
2mα− (ωq)

2

where alpha is positive constant. And then, the next step involves integrating this equation.

ψ (q, α) =
∫ √

2mα− (ωq)
2
∂q + constant

So,this is without loss of generality, because even if we keep more constants, later on in the solution, we
can always club them to reduce the number of constants. So that is why, what we do is, we take the
constant of integration to be 0. So constant of integration, we take it equal to 0. So this is 0, because
we already have one constant sitting here. So, then, we can (direct), I am going to directly write down
the solution to this integral equation

ψ (q, α) = ω
2

[
q
√
α2 − q2 + a2 arcsin

(
q
a

)]
where a =

√
2mα
ω

And,for extrema, I just need to solve one equation that I highlighted in my solution strategy

β = ∂ψ
∂α − t = −mω arcsin

[
q
α

]
− t

⇒ q (t) = −
√
2mα
ω sin

[
ω
m (β + t)

]
And the solution is similar to, recall that we had looked at this problem of geometric optics in more than
one occasion. Specially we had seen the solution to this system in our previous lecture.

So recall, I have example 3 in my lecture 13, the previous lecture series. So, that completes this example
and let us now, look at how to solve, we have right now just shown the solution to this special class of
Hamiltonian system, namely conservative system. The next set of discussion will be involving how to
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solve, this Hamilton-Jacobi equation for this conservative system class.

(Refer Slide Time: 06:51)

Namely, we are going to look at the method of separation of variables. So, method of separation, which
we promised few minutes back, that I am going to talk about it. So let us look at this, this method in
the most general form. Consider the reduced Hamilton-Jacobi equation for the conservative class ,which
is equal to a constant , let me call the constant as E.So,I am going to rewrite this by saying that this is
equal to 0.

H
[
q1, q2..., qn,

∂ψ
∂q1

, ..., ∂ψ∂qn

]
− E = 0 (1)

Now suppose, we are in a situation where, all the functions of q1,q2,..qn they can be clubbed together in

the form of g
(
q1,

∂ψ
∂q1

)
Suppose we are able to separate out one of the variables, that is q1 and write

it in a specific form. Let us say the function to be g of that variable.

So what I said is the following. Suppose
(
q1,

∂ψ
∂q1

)
appears through a combination of the form g1

(
q1,

∂ψ
∂q1

)
where g1 is a known function. Now equation 1 is identical to the following form

H
[
g1

(
q1,

∂ψ
∂q1

)
, q2..., qn,

∂ψ
∂q2

, ..., ∂ψ∂qn

]
− E = 0 (2)

Now, I, notice that since we have separated out the variable q1, possibly in this situation, we can have
a solution in which the variable q1 can be separated. So, if possible,let me call this expression be 2, will
have a solution,of the form

ψ = ψ1 (q1, Q) +R1 (q2, ..., qn, Q) (3)

So, we have separated out, you know, the solution in which the variable q1, appears, where capital Q
is the generalized coordinate, the coordinate in the new Hamiltonian system, so, that can also appear
here. So, I call this set of equation to be my 3. So notice, what have we got here? So, notice that since
my variables q2 to qn have been separated out from q1, so then ∂ψ

∂q2
will be nothing but ∂R1

∂q2
and so on
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forth. So if I were to use 3 in 2, then some of these derivatives can be simplified.

(Refer Slide Time: 11:38)

So using expression 3 in 2, then I see that

H
[
g1

(
q1,

∂ψ
∂q1

)
, q2..., qn,

∂R1

∂q2
, ..., ∂Rn

∂qn

]
− E = 0 (3’)

So, what we got? Notice that g1 is only a function of, q1

Suppose I have found this function g1, such that g1 is differentiable with respect to q1. So, assuming g1
is differentiable with respect to q1, So we differentiate 3′ with respect to q1. I see the following

∂H
∂q1

= ∂H
∂g1

∂g1
∂q1

= 0

Now, this equation tells us that either ∂H
∂g1

= 0 or ∂g1
∂q1

= 0. But ∂H
∂g1

cannot be 0, because g1 is a general

function.We cannot, all the time have that ∂H
∂g1

= 0. For certain class of functions g1, it may be the case
but not for all of functions g1. So, which means that

∂g1
∂q1

= 0 or g1 = g1 (q1, ψ
′ (q1, Q)) = C1 (Q) (4)

So, which means that this condition here, the condition 4 is actually a first order differential equation for
my unknown ψ1 . ψ1 is the only function which depends on q1. So, from here I can find out my function
ψ1. So, similarly, we can continue this process for ψ2 , ψ3 ,ψ4 and ψn and so on.

(Refer Slide Time: 17:40)
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Similarly,what I have is, suppose
(
qk,

∂ψ
∂qk

)
they appear in 1 as the functional form gk

(
qk,

∂ψ
∂qk

)
where

gk’s are all known function from k 2 ,.., n, for each of the cases and from here I can deduce that

ψ (q̄, Q) + ...+ ψn (qn, Q) (5)

Where my function ψk’s, satisfy n uncoupled first order differential equations, of the form

gk
(
qk, ψk

′ (qk, Q)
)

= Ck (Q) (6)

In the similar fashion, we will have the first order differential equation for each component, like we did
it in the first component,where Ck’s are not independent

So Ck’s, the constants, they satisfy, the reduced Hamilton-Jacobi equation. So they satisfy 2. So what
is 2? So instead of gk’s, I replace the gk’s by Ck’s. So they satisfy 2, which means that

H [C1, ..., Cn]− E = 0

Essentially, this equation is used to eliminate, 1 of the Ci’s. So which means thatCi’s are not completely
linearly independent of each other, but this is one linear dependence, in which we can eliminate one
of the constants. So, far I have described the general methodology of the separation of variables for
conservative systems.

(Refer Slide Time: 20:57)

5

338



So, let me summarize.solution strategy using separation of variables for conservative systems. So let us
say we assume solution of the form 5. then identify the gk’s the functional dependence of qi’s via 6.

So, again going back, , we solve 6 for ψk’s, and substitute, in our equation 5 to get our generating
function ψ. And which is what we are after, which is the solution of the reduced Hamilton-Jacobi. So let
us look at one example which involves this solution strategy. So the example is numbered as 9, following
our sequence

So the example is, we are solving the problem in Cartesian coordinates. we consider the motion of a
particle in space under the action of gravity in, and the gravity only acts in one of the coordinates q3,
direction with Hamiltonian as follows :

H = 1
2m

[
p1

2 + p2
2 + p3

2
]

+mgq3

where my mass is m, g is my gravitation constant and q1, q2, q3 makes their own sense. Now we write
down our reduced Hamilton-Jacobi equation.

(Refer Slide Time: 24:33)
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So, my reduced Hamilton-Jacobi equation is as follows:

H (q̄, p̄) = E

Where E is a constant then from here, I replace p by ∂ψ
∂qi

and from here I know the form of the Hamiltonian.
So I get the equation as follows:[(

∂ψ
∂q1

)2
+
(
∂ψ
∂q2

)2
+
(
∂ψ
∂q3

)2
+ 2m2gq3

]
− 2mE = 0

Now I have to solve this system, we have to separate variables or the first step involves identifying the
functions gk’s, in which the variables q1, q2, q3 can be clubbed together. First of all, the step 1 involves,
assume a separable solution. So assume ψ = ψ1

(
q1, Q̄

)
+ ψ2

(
q2, Q̄

)
+ ψ3

(
q3, Q̄

)
The second stage is

identifying gk’s. So we can take gk = ∂ψ
∂qk

for my first two components k =1, 2. Notice that they are
quite similar.

But for the third component I have to take my gk to be

g3 =
(
∂ψ
∂q3

)2
+ 2m2gq3

Note that I have not taken a square in g1 and g2 because if if I had take a square, the solution involves
gk set equal to the constant Ck. So, we could have taken square roots. So taking square does not matter
in the first two components.

So then, the third stage involves the solution to these to find ψk’s. So note that, for k = 1 and 2,
the solution methodology is identical and we see that ∂ψk

∂qk
= Ck

(
Q̄
)

or from here I see that ψk =

Ck
(
Q̄
)
qk + Kk

(
Q̄
)
. I have just integrated this. We see that the ψk’s for k equal to 1 and 2, they are

linear functions of the respective position coordinates q1 and q2.

(Refer Slide Time: 28:35)
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For the third case g3 for k =3, I have that

∂ψ
∂q3

=
√
C3

(
Q̄
)
− 2m2gq3

So now I have to integrate this equation

ψ
(
q3, Q̄

)
=
∫ (√

C3

(
Q̄
)
− 2m2gq3

)
dq3

So this is integral with respect to q3, but we can eliminate C3 in terms of C1 and C2 using my H = E,
using that expression.

So we eliminate one of the constants. As I said, we have one constraint H is equal to E, so H is a function
now of C1, C2, C3. From here, I get that

ψ
(
q3, Q̄

)
=
∫ (√

2mE − C2
1 − C2

2 − 2m2gq3

)
dq3

Now see that this integration is with respect to q3

So, I am going to write down the answer

ψ3 = − 1
3m2g

[
2mE − C2

1 − C2
2 − 2m2gq3

] 3
2 +K3

(
Q̄
)

Now, let me call the quantity inside the power 3 by 2 as γ3, where gamma is the square root of this
quantity here, which is underlined.

So finally, my solution is

ψ = ψ1 + ψ2 + ψ3 = C1

(
Q̄
)
q1 + C2

(
Q̄
)
q2 − 1

3m2gγ
3 +K

(
Q̄
)

Now, notice that, C1 and C2, these two are my constants. These are my constants in the framework
(p̄, q̄). These are my constants in the original reference frame .

Well, we also have a constant, which is inside gamma.And finally, we are saying, we are introducing
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another constant, so we have introduced 4 constants. As I said previously in an n dimensional problem,
we try to keep n constants. So we take K such that K is already absorbed in the third constant, 2mE,
so we only have a 3 constant problem.

(Refer Slide Time: 33:15)

So, what have we done is, we take our C1 to be α1 and C2 to be α2. These are my constants in my original
reference frame my E is arbitrary/constant, so that, I take my E to be α3 and I take my K (Q) = 0,
which means essentially, I have absorbed one constant.

So now my solution of the reduced Hamilton-Jacobi looks like the following.

ψ̄ (q̄, ᾱ) = α1q1 + α2q2 − 1
3m2g

[
2mα3 − α2

1 − α2
2 − 2m2gq3

] 3
2 .

So all it needs to see is whether this solution is complete or not and only then we are able to find the
extremal q.

So check

∂2ψ
∂qj∂αk

=

1 0 0
0 1 0
0 0 −mgγ


So the determinant of this matrix is certainly not equal to 0, provided |gamma is defined. So the
conclusion is, ψ is complete, which means, now we are able to find the extremal.

(Refer Slide Time: 35:25)
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The extremal is given by the solution to the following set of equations. I see that

βk = − ∂ψ
∂αk

k = 1, 2

β3 = − ∂ψ
∂α3

This will give my extremalto the reduced, to the reduced Hamilton-Jacobi equation. Now, if you were to
seek the extremal to the original Hamilton-Jacobi equation .So what is the relation between the original
and the reduced?

We had the dependence of t. So here, the, the solution to the original Hamilton-Jacobi will

βk = − ∂ψ
∂αk

k = 1, 2

β3 = − ∂ψ
∂α3
− t

And from here, I can find out that my extremals are such that

qk = −βk + αk

m [β3 + t] k = 1, 2

q3 = −g (t− β3)
2

+ 2
mgα3 − 1

2m2g

[
α2
1 + α2

2

]
So, my original Hamilton-Jacobi is where the time, the independent variable appears. So, once we have
the solution to the reduced Hamilton-Jacobi, we have shown that all we had to do was to change our
last coordinate. And that, from here we can get the extremals. So this is my extremal solution.
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