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In today’s lecture, I am going to continue our discussion on the Hamiltonian formulation of the condition
for finding the extremals, we will continue our discussion on the Hamiltonian formulation, this is a con-
tinued series of discussion, I am going to start our discussion right away by introducing the Hamiltonian
formulation for functions of several variables.

So that will include the special case of function with one dependent variable. So, several dependent
variable case. Right? So, I am talking about, so let us consider a Legendre transformation involving the
Lagrangian of the form L(t, q̄, ˙̄q) where vector q̄ = (q1, ......., qn), we will see that we are going to see if
our starting function is of this form, the first set of steps for defining the Legendre transformation is to
introduce new sets of variables.

Let me introduce the new variable p, let the variable pk = ∂L
∂q̇k

where k = 1, 2,......,n. I
using this I, we can invert this relation to find qK in terms of pK provided this inversion is possible.
What I mean by that is certain higher derivatives are non-zero. So, equation I can be used to solve for
qK in terms of pK provided the Hessian matrix has a non-determinant

Hessian matrix [M ] =

[
∂2L

∂q̇i∂q̇j

]
ij

is non-singular or it has non-zero determinant

this is a standard inversion argument for functions of several variable.
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Next we have to define another variable which is our Hamiltonian variable, note that while introducing
the variables, p and H, we have used the fact that t and q are passive, let me now introduce another
variable. Let the n dimensional Hamiltonian is defined by

H[t, q̄, p̄] = −L(t, q̄, p̄) +
n∑

k=1

q̇kpk II

I have assumed that the variable t and q̄ are passive variables i.e. they are going to appear implicitly.
So, this Legendre transformation defined by equation I and II is an involution.

(Refer Slide Time: 6:07)

We take the derivative of the Hamiltonian with respect to p.

⇒ dH

dpk
= − ∂L

∂pk
+

n∑
j=1

∂q̇j
∂pk

pj + q̇k

=
n∑

j=1

[
− ∂L

∂q̇j
+ pj

]
∂q̇j
∂pk

+ q̇k = q̇k

And −H(t, q̄, p̄) +
n∑

k=1

q̇kpk = L(t, q̄, p̄)

Let us look at this example, more applied framework. In Newtonian mechanics, my L, which is the
Lagrangian, is the sum of the kinetic plus potential energy. So, in Newtonian mechanics my pk’s are
denoted as the generalized momenta variable and L which is the Lagrangian is defined to be

T (t, q̄, p̄) − V (t, q̄), where the first quantity in the continuum mechanics is the kinetic energy and the
second quantity is the potential energy.
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Vector q̄ is the position of the particle at time t, for example, consider a freely moving particle of mass
’m’ If q̄ = (q1, q2, q3) and these are my Cartesian coordinates of the position of the particle.

⇒ T (t, q̄, ˙̄q) =
1

2

[
q̇21 + q̇22 + q̇23

]
, V (t, q̄) = 0

pk =
∂L

∂q̇k
= mq̇k H = −T +

∑
q̇kpk

So, for j identical particles, for each particles. So, I have that n = 3j For each particle we have 3
coordinate positions and hence we have the total degrees of freedom being 3j, Where j is standing for
each particle, so we are now in a position to describe another form of Euler-Lagrange equation. Right?

(Refer Slide Time: 14:46)
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So, let me now start with the so-called Hamilton’s, Hamilton’s, This is another form of Euler-Lagrange
conditions. We will see what is the advantage of Hamilton’s equation soon. So now let us describe the
Hamilton’s equation, let J be a functional such that J(q̄) =

∫ t1
to
L(t, q̄, ˙̄q)dt where q̄ = (q1, .....qn) and

function L is the Lagrangian and if q is a smooth extremal then it must satisfy the n Euler-Lagrange
equation

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0

Now I’m going to introduce the so-called conjugate variables which are p and H

⇒ pk =
∂L

∂q̇k
generalized momenta

And we can always invert this relation to find q̇j = f(t, qj , pj)

Hamiltonian H(t, q̄, p̄) =
n∑

i=1

piq̇i − L(t, q̄, ˙̄q)

Now, let us see some necessary derivatives out of this Hamiltonian. So, we see that if we differentiate
Hamiltonian with respect to pi, pi is an independent variable. It only appears in the first sum i from 1
to n. So, the derivative of H with respect to pi will give me q̇i and the derivative of H with respect to
qi will give me the derivative of L with respect to qi with a minus sign because qi appears only in the
second term.

(Refer Slide Time: 19:01)

4

299



⇒ ∂H

∂pi
= q̇i

∂H

∂qi
= − ∂L

∂qi
= − d

dt

(
∂L

∂q̇i

)
= ṗi

q̇i =
∂H

∂pi
; ṗi = −∂H

∂qi
i = 1, .......n 2

These two are the relations that we were after. So, the idea is to derive the Hamilton’s equation, we
start with our Euler-Lagrange condition. From there I transform those equations into the conjugate
variables and from there I derive the necessary equations, which are these two set of equations. Notice
now, we have two sets of decoupled equation for each i rather than having one coupled equation in terms
of Euler-Lagrange condition.

By the way, this is Hamilton’s equation or also known as the Canonical Euler-Lagrange equations in
generalized coordinates and we see that these are n Euler-Lagrange differential equations Which are now
for i equal to 1 to n and so the n Euler-Lagrange differential equations have been converted into 2n 1st
order differential equations.

Note that the derivatives of q and p have been decoupled. So, this set of equations are quite easy to solve
and comparatively easier to solve then the Euler-Lagrange equation, then finally, I end this discussion
by mentioning that the solution that we obtained (q̄, p̄) is a unique solution to equation 2 provided the
Hessian matrix has a nonzero determinant

∂(q̇1, ......, q̇n)

∂(p1, ......pn)
6= 0

(Refer Slide Time: 23:42)
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Let us quickly look at how to use Hamilton’s equation in finding the extremal of a functional.

Example that I have in mind is that of the simple pendulum. So again, we have a pendulum standard
blob of mass m which is hanging by a rope of length l and the angle that it subtends φ(t) and let us say
that the position coordinate is (x, y) at any point of time So, I am not going to write down the statement
but rather state the functional directly.

I have to minimize the action integral which was described few lectures back.

J(φ) =

∫ t1

to

{
ml2φ̇2

2
−mgl(1− cosφ)

}
dt

L(t, φ, φ̇) =
ml2φ̇2

2
−mgl(1− cosφ)

let us look at the solution via the Euler-Lagrange
Recall that has already been done earlier few lectures back. So, recall the Euler-Lagrange machinery
provided this following relation.

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0

⇒ d

dt
[ml2φ̇] +mgl sinφ = 0

⇒ φ̇+
g

l
sinφ = 0

Standard pendulum equation that we derived from Euler-Lagrange earlier, we solve for the angle φ We
have done that earlier. So, let us see what happens when we use the Hamilton’s equation.

(Refer Slide Time: 27:06)
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Now I am going to use the Hamilton’s equation, for that, I have to set up the conjugate variables.

p =
∂L

∂φ̇
= ml2φ̇⇒ φ̇ =

p

ml2

H(φ, p) = pφ̇− L =
p2

2ml2
+mgl(1− cosφ)

Hamilton’s equation
∂H

∂p
= φ̇ ⇒ φ̇ =

p

ml2

−∂H
∂φ

= ṗ ⇒ ṗ = −mgl sinφ

Then we solve this equation simultaneously, we differentiate these equation and plug the answer in the
first one to come to a point that

φ̈+
g

l
sinφ = 0

And that is the same equation as the Euler-Lagrange equation. So, the Hamilton’s equation in this case
gives us the extremal which is originally given by the Euler-Lagrange machinery, let us look at another
example in which the Hamilton’s principle is especially useful. The Euler Lagrange machinery is going
to give me an equation which is very very complicated.
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