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Lecture 31

Broken Extremals / Hamiltonian Formulation Part 1

In this lecture we are going to continue our discussion for optimization of functional with variable end
points and in this lecture, we are going to look at the general situation namely, when both the x and y
coordinate at the end points are allowed to vary.

(Refer Slide Time: 00:36)

In this lecture we will look at the general variable boundary points, this is part 2 of our discussion, and
this is the most general case that we can help for variable boundary point case discussion. I start the
topic saying that so far what we have done, we have allowed the y coordinate to vary, we have allowed
y(x1) and y(x0) to vary, We have allowed these points to vary keeping x0, x1 fixed .

Now we are going to do is that we allow both x and y to vary, this is the scenario we are going to look
at, when the boundary points are such that both the coordinates are allowed to vary. let us see what is
the situation through a diagram. So, what we have is the following. So, let me try to draw this diagram
a bit carefully, this is in 2D Cartesian framework. So, suppose we are given an extremal. The extremal
is described by the boundary points (x0, y0) and the second boundary point is (x1, y1) and we allow the
perturbation to vary, let me call this perturbation as ŷ(x).

This second curve is ŷ, notice the way how I have drawn is both x and the y coordinate can vary. So, let
us say that this particular point is x̂0 and this particular point is ŷ0. Similarly, we could have that this
particular point is x̂1 and of course we can continue our discussion by saying that this particular point
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is ŷ1, which means further we are going to refer this figure as F-1 and we are going to refer it again and
again when we look at the derivation.

What we have is a following, let the curve y [x0, x1]→ R be a smooth function with end points P0(x0, y0)
and P1(x1, y1) So, these are the end points of the smooth curve. Similarly, we describe the perturbed
curve ŷ [x̂0, x̂1] → R be again smooth function with end points P̂0(x̂0, ŷ0) and P̂1(x̂1, ŷ1) and lets now
generalize this end points (x0, y0) and introduce the notation x̃0 and let us say that x̃0 is the minimum
of (x0, x̂0) and x̃1 is the maximum of (x1, x̂1)

I I am going to describe both this function y and its perturbed quantity ŷ in the extended interval [x̃0, x̃1]
, we see that in the perturbed interval y(x) can be defined as follows, I am using Taylor series, we see
that y(x) is nothing but the same curve y(x), if x ∈ [x0, x1], the original curve is recovered.

Now from the point x ∈ [ ˜x0, x0), I am talking about in this particular range. In this particular range
when x takes its value, I can always write y(x) in terms of xo using Taylor series.

y(x) = y(xo) + (x− xo)y
′
(xo) + (x−xo)

2 y
′′
(x0) x ∈ [x̃o, xo) I am describing in terms of xo,we have set up

our x̃o such that x̃o < xo

y(x) = y(x1) + (x1 − x)y
′
(x1) + (x1−x)

2 y
′′
(x1),when x ∈ [x1, x̃1)

So, I am assuming x1 is bigger than x, and xo is smaller than x in the previous interval, where my y is
a differentiable function now, between the new interval x̃o, x̃1, I have extended the function y(x). Now
without loss of generality I am going to assume that x̂o < xo where the perturbed function is defined,
We could assume the other inequality also.

(Refer Slide Time: 09:19)
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What I am saying, we can assume without loss of generality that x̂o < xo or so, if that is the case

⇒ y(x̂o) = y(xo) + (x̂o − xo)y
′
(xo) +O

(
(x̂o − xo)2

)
Now let us say that the perturbation is such that it is only marginal or in the sense that the x̂o−xo = εXo

So, this is of the order of epsilon.

similarly, this particular distance is of the order of εYo. So, the perturbation is such that the pertur-
bation is linear order. So, similarly this is order εX1, this particular perturbation is εYo , these are my
assumptions.

So, the assumption is so, if that be the case, I can rewrite my function y(x̂o) = y(xO)−εXoy
′
(xo)+O(ε2)

So, I can always rewrite my perturbed y at the perturbed value in terms of y at the original value of the
x at the original interval.

So, the idea is, the similar exercise can be done to extend my perturbed function so, similarly I am going
to extend I just say that I extend this perturbed function without writing the entire formula. So, I have
shown the exercise for y, I assume the students will be able to do the similar exercise for ŷ.

We extend the curve ŷ on the interval [x̃o, x̃1], where ŷ = y+ εη , I need a further definition, I define the
distance between y and ŷ

d(y, ŷ) = ‖y − ŷ‖+
∣∣∣Po − P̂o∣∣∣+

∣∣∣P1 − P̂1

∣∣∣ ∗

where I define my norm of y − ŷ to be the supremum norm. I say that this is the supremum of |y|, So,
‖y‖ = supx∈[x̃o,x̃1] |y|, we want allowed perturbations to be as close to y as possible. So, we want the
perturbations are not arbitrarily choosen but it is chosen arbitrarily close, so, that it is close enough at
the order of ε.

So, what I said is the following, we want the perturbation to be close to y, y is given by the distance

3

245



metric ∗ but do not specify the end points. So, our end point is a variable of the problem here. We do
not know what is xo, x1, yo, y1 except that they are at the order of they are close enough of the order of
ε. So, the end points are not specified except the fact that we require them to be order ε apart.

So, what I mean to say is that x̂k = xk + εXk and ŷk = yk + εYk, where k = 0, 1 So, if we make this
following assumption I can immediately find these norms.

(Refer Slide Time: 16:08)

So, from here I can see that
∣∣∣Pk − P̂k∣∣∣ = ε

√
X2
k +Y 2

k , k = 0, 1, Now I am ready to describe the extremal

for the class of functional with variable end points. So, let us start our background. let J be the functional
such that J(y) =

∫ x1

xo
f(x, y, y

′
)dx such that f is a smooth function of x, y and ŷ.

I need J to be stationary, J is stationary to find the extremal. I need J stationary so, that the difference
between J(ŷ)− J(y) = O(ε2), that is whenever d(ŷ, y) = O(ε) (ε→ 0).

Variational at the functional J,

⇒ J(ŷ)− J(y) =

∫ x̂1

x̂o

f(x, y, ŷ′)dx−
∫ x1

xo

f(x, y, y
′
)dx

J(ŷ)− J(y) =

∫ x̂1+εX1

xo+εXo

f(x, y, ŷ′)dx−
∫ x1

xo

f(x, y, y
′
)dx

We can simplify this further, notice that I can break down this first integral in to set of 3 integrals, in
the first integral let me look at the interval from xo to x1 and in this interval I have the common f as
well, So, in this interval I have the standard difference. Both the functions are defined in this interval
xo and x1.
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=

∫ x1

xo

f(x, y, ŷ′)dx− f(x, y, y
′
)− dx−

∫ x̂o+εXo

xo

f(x, y, ŷ′)dx+

∫ x̂1+εX1

x1

f(x, y, ŷ′)dx

So, now I have this 3 integrals and setting we need to find the stationary point or the stationary function
we need to set this the sum of these 3 integrals equal to 0 and simplify. Notice that I can find the
difference in the first integral and I see that this is nothing but this is of order in the order epsilon up to
order epsilon terms this becomes the following quantity via standard Euler-Lagrange argument.

I :

∫ x1+εX1

x1

f(x, ŷ, ŷ
′
)dx = εX1f(x, y, y

′
)|x=x1

+O(ε2)

II :

∫ xo+εXo

xo

f(x, ŷ, ŷ
′
)dx = εX1f(x, y, y

′
)|x=xo +O(ε2)

(Refer Slide Time: 22:51)

δJ(η, y) = lim
ε→0

J(ŷ)− J(y)

ε
= η

∂f

∂y′ |x1
xo

+

∫ x1

xo

η

[
∂f

∂y
− d

dx

∂f

∂y′

]
dx+X1f(x, y, y

′
)|x1
−Xof(x, y, y

′
)|xo

III

Well, although we have written this variation we know that these points small xo and small x1 are still
variables. So, this is now still not in the form we are ready to evaluate. So, let us now do a little bit
more simplification. So, far we express the variation in a more convenient form. So, what I just said is
following.

Note that this quantity η ∂f
∂y′
|x1
xo

is difficult to calculate, since my points xo and x1 are variable and we

need to find a generalized natural boundary condition, which means that the perturbed end points and
the perturbation η so, which means that we have to write down these, this expression on the right hand
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side such that certain consistency criteria’s are also satisfied. So, what are these certain consistency
criteria’s? So, what I just said is the following.

The perturbed end points (X̂o, Ŷo)/(X̂1, Ŷ1) the two perturbed end points and the perturbation function
η, certainly they will not in the more simplifying case will not vanish the end points where end points
are not always well defined. They are also, varying. But certainly η is going to satisfy some constants
which we are going to outline right now should satisfy certain compatibility condition. So, what are
these compatibility condition? So, they must satisfy this compatibility condition.

(Refer Slide Time: 29:08)
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Note that I am going to take my xo so that x̂o = xo + εXo and ŷo = yo + εYo . Now

Note : ŷo [= yo + εYo] = ŷ(x̂o) = ŷ(xo + εXo) = y(xo + εXo) + εη(xo + ηXo)

⇒ yo + εYo = yo + εXoy
′
(xo) + εη(xo)

⇒ η(xo) = Yo −Xoy
′
(xo) +O(ε)

Similarly η(x1) = Y1 −X1y
′
(x1) +O(ε)

(Refer Slide Time: 33:32)
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From III δJ(η, y) =

∫ x1

xo

η

[
∂f

∂y
− d

dx

∂f

∂y′

]
dx+X1f |x1 −Xof |xo + Y1

∂f

∂y′ |x1 − Yo
∂f

∂y′ |xo+

X1

(
− y

′ ∂f

∂y′

)
|x1
−Xo

(
− y

′ ∂f

∂y′

)
|xo

= 0

δJ(η, y) =

∫ x1

xo

η

[
∂f

∂y
− d

dx

∂f

∂y′

]
dx+ Y1

∂f

∂y′ |x1 − Yo
∂f

∂y′ |xo +X1

(
f − y

′ ∂f

∂y′

)
|x1 −Xo

(
f − y

′ ∂f

∂y′

)
|xo

let us look at the special case because I need to conclude something more. In the special case if we go
back to our fixed end point criteria. Xk, Yk = 0, there is no variation, k is 0 and 1. So, all these extra
4 terms will vanish and then my variation reduces to this integral constants and from there I get from
lemma 2, lecture 2 that my Euler-Lagrange equation are recovered. So, in this special case scenario we
must have that this must hold

⇒ ∂f

∂y
− d

dx

∂f

∂y′ = 0 (Standard Euler-Lagrange condition)

(Refer Slide Time: 38:27)

let me just introduce 2 new notations.

1 p[ momentum] = ∂f

∂y′

2 H[Hamiltonian] = y
′ ∂f

∂y′
− f

3 δx(xk) = Xk/δy(yk) = Yk k = 0, 1

From 3 we have the first satisfaction of the Euler-Lagrange equation ∂f
∂y −

d
dx

∂f

∂y′
= 0 IV
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and further by clubbing my set of 4 boundary condition, I have that pδy −Hδx|x1
xo

, In the more concise
notation I have now come up with the natural boundary condition for the general class of variable end
point problems. So, this is my additional end point constraint
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