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Example that I have in this case is of the beam mechanics. So, we consider a beam or a steel rod which is
flexible and the beam is of length l and uniform cross section, The beam is of length l and uniform cross
section. Let my function y: [0, l] → R describe the shape of the beam and let us say that ρ : [0, l] → R
is a load per unit length or the mass per or unit length which is acting on the beam.

Then in that case the shape of the beam is governed by the functional which minimizes the energy of the
beam, it turns out that the shape of the beam y(x) is such that the energy functional J(y) is minimum,
the shape is such that the energy functional is minimum and the energy of the beam in general will be
given by its some of elastic energy plus the potential energy.

We are ignoring the effect of the weight here. So, the elastic energy of the beam in the most simple

rotation could be written as a constant, let J(y) =
∫ l
0
κy

′′

2 dy−
∫ l
0
ρydy where this quantity in the integral

is my bending energy or elastic energy of the beam and this quantity here is my potential energy of the
beam due to the load that is acting on the beam. So, then we need to find the optimal shape of the
beam such that it is going to first satisfy the Euler-Poisson equation.
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Euler-Poisson equation for this functional reduces to the ODE y(IV )(x) = ρ
κ

once we integrate equation a, I get that y(x) = P (x) + C3x
3 + C2x

2 + C1x+ Co where P (IV )(x) = ρ
κ

The other constants can be found by our 4 natural boundary conditions that we had just derived C0 to
C3, Now, I am going to consider the different cases of these bent beam problems, let me introduce some
notations in solid mechanics, we introduced certain physical terms or notations in solid mechanics.

We introduced the term total force, the total force is defined as F =
∫ l
0
ρdx = κ

∫ l
0
y(IV )dx and this is

also equal to from a, then from here I can certainly integrate this is an exact differential, you see that

this F = κ
[
y(

′′′)(l)− y(′′′)(0)
]

Where these quantities are known as the reaction forces on the beam at x = 0 and l, I introduced another
term known as the moments as well as torque by the force above that we had just described. I denote

these moments as M, where M =
∫ l
0
xρdx = κ

∫ l
0
xy(IV )dx

We do the integration by parts and we are going to come to a fact that M = κ
[
ly

′′′
(l)− y′′

(l) + y
′′
(0)
]

, again we have these quantities as my reaction forces and this quantity is the moment produced by the
reaction forces.
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Now, let us now look at some special cases of these beam problems, the different examples where the
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beams are either clamped or freely moving. let us look at the simplest case. The first case we can have a
beam which is doubly clamped or the beam is clamped at xo and x1, which means that we have a fixed
boundary at xo and x1, this is my standard fixed point boundary condition problem. Let us say we have
the boundary condition of the form xo = 0 and x1 = l, y(0) = y

′
(0) = y(l) = y

′
(l) = 0

We approach in a standard Euler-Poisson setup with only fixed point boundary conditions, that is already
been done quite a few times. The second case we have in mind is the cantilever problem where we have
a beam is able to bend at one of the end points.

So, this is my fixed boundary here at xo = 0 the beam is fixed as well as its slope is defined but on the
other end at x1 = l it is free to move, it means this is a situation where the beam is clamped at x= 0 or
I have that y(0) = y

′
(0) = 0, these are my 2 boundary conditions and the other 2 boundary conditions

at x = l are natural conditions or at x1 = l I have the natural condition.

We impose the natural boundary condition that ∂f

∂y′
|l and f = κ(y

′′
)2

2 − ρy ⇒ ∂f

∂y′
|l = κy

′′ |l = κy
′′
(l) = 0

and d
dx

∂f

∂y′′
− ∂f

∂y′
|l = κy

′′ |l = 0

So, this is my reaction force, then we now have 4 boundary conditions and the problem now is fully
defined. So, let us continue with another case.

(Refer Slide Time: 13:32)

Suppose we are given a beam which is just supported over a particular support. let us say this is my
point xo = 0 and x1 = l and suppose I have a beam which supported at these two points. Then, this
question is how are we going to find the extremal shape of this beam.

The case is simply supported beam. So, how to approach for simply supported beam we will certainly
have that, the fixed point condition y(0) and at y(l), they are set equal to 0. So, certainly we have 2
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fixed point conditions given by y(0) = y(l) = 0 . However, note that in this case the slope may not be 0
because it is just a simply supported beam case. So, for the slope we are going to, instead of the fixed
slope we are going to use the natural boundary condition to determine the slope at these end points.

So, the natural boundary condition would be that the reaction moments and reaction forces are set equal
to 0. So, we have the following, for slope at the end points we instead replace with these two conditions.
We have ∂f

∂y′′
|xo,x1

= 0, those are my set of 4 boundary conditions for simply supported case.

Then, finally we could also include a case which is the unsupported beam. The unsupported beam is
where neither the position nor the slope is specified. So, in that case we can use all sets of 4 natural
boundary condition which are the following, we have the reaction the reaction moment set equal to 0.
So, y

′′
(0) = y

′′
(l) = 0; y

′′′
(0) = y

′′′
(l) = 0

That comes right from this set of condition here and my reaction forces are also, 0. So, those are my
4 sets of natural boundary conditions and that will complete our problem description. Finally, we have
one more case and we will see that this is not solvable by the model that we have just described. The
case that I have is with a beam having only one end point fixed. One end point fixed, but not clamped,
but not clamped. So, what is this scenario? let us say the beam has one end point fixed xo = 0 has a
fixed coordinate yo but the slope of the beam at this point is not defined.

In this case y prime at xo also is unknown. So, what should we expect that the beam, what would be the
optimal shape of the beam in this case? Well the beam is free to move except that the positon is fixed
at one point. So, the physics tells us that the beam will just lie into a configuration which is parallel to
the wall or to reduce the total energy of the beam and this is a case where the model has failed. The
model cannot justify this configuration of the beam. It is purely coming out of the physics.

So, the model fails here because the beam collapses and lies vertical. So, there is no solution. So, let us
look at another example.

(Refer Slide Time: 19:17)
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Consider example we need to revisit our assumption on the elastic energy of the beam. So, let us
reconsider our beam example and specially the elastic energy of the beam.

Notice that the elastic energy that we have chosen was of the following form
∫
κ(y

′′
)2dx where κ was

assumed to be a constant. So, this was our elastic energy of the beam but this is when the beam bends,
the bending of the beam is negligibly small. This is true only when the slope is very small.

We will see once we derive the general, well, this is nothing but the curvature of the beam. The curvature
decides the elastic energy. We will see that when we derive the general expression for the curvature.
In general the curvature depends on the slope of the shape of the beam, and it again reduces to this
following form when the slope of the beam is very small. So, in general, I have κ(s) is the line curvature
or the curvature of the curve of our interest and this is also equal to the magnitude of the rate at which
the tangent of the arc length changes direction.

Also, the magnitude of the rate at which the tangent of the arc length changes direction. So, what
exactly is κ(s)? So, κ(s) is the magnitude of the rate of change of the tangent. The rate at which the
tangent changes. So, the tangent of the curve is given by ṙ(s) and the rate at which tangent changes is
r̈(s) and its magnitude.

In 2-D this is nothing but the magnitude of ‖ẍ(s), ÿ(s)‖ =
√
ẍ2 + ÿ2 where (̇) = d

dx .

Notice that, note that my arc length of the curve is ds2 = dx2 + dy2 or
(
ds
dx

)2
= 1 + (y

′
)2

⇒ ds
dx =

√
1 + (y′)2 ⇒ dx

ds = 1√
1+(y′ )2

= x
′
(s) from here I can find ẍ by differentiating this quantity one

more time.

(Refer Slide Time: 24:04)
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⇒ ẍ(s) =
d

ds
(ẍ) =

d

dx
(ẋ)

dx

ds
= ẋ(s)(ẋ)

′
=

1√
1 + (y′)2

d

dx

(
1√

1 + (y′)2

)
=

−y′
y

′′

[1 + (y′)2]2

Similarly I can find ÿ(s). How should we do that? We know that ẋ2 + ẏ2 = 1⇒ ẏ(s) = ẋ(s)ẏ
′
(s)

⇒ ÿ(s) = y
′′

[1+(y′ )2]2
, finally my curvature κ2(s) = ẍ2 + ÿ2 = (y

′′
)2

[1+(y′ )2]3

Notice that my curvature now depends on the slope of the curve y
′

and it reduces to (y
′′
)2 when the

slope is negligibly small. So, what have I said is the following.

(Refer Slide Time: 28:18)

For small deflection κ(s) = y
′′

[1+(y′ )2]
3
2
≈ y′′

[
1− 3

2 (y
′
)2 +O((y

′
)4)
]

We are going to look at the class of beam problems from now in this lecture where we minimize the
elastic energy and those class of beam problems with minimum elastic energy are known as elastica.

So, we are going to look at the shape of elastica for a different setup, bent beams with minimum elastic
energy are known as elastica, Well, typical example is a thin strip of elastic material which adopts a
shape when forced to bend. So, we are going to look at two examples of elastica.
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