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Further before we discuss the problems in this category. Let me just eliminate the pathetic cases or the
problems which are abnormal or the problems where we have rigid extremals. Let us look at problems
with rigid extremals and we are not going to discuss problems of this category from after this. so, what
happens with problems with rigid extremals? I am talking about problems where the derivative of the
constraint ∂g

∂q̇j
= 0.

Let us see what happens to this class of problems with an Example: We have the functional of the form
J(y) =

∫ t1
to
q1
√

1 + q̇22dt subject to q̇21 + q̇22 = 0 and the boundary conditions are q̄(to) = q̄o, q̄(t1) = q̄1 ,
we need real valued solution, the non-holonomic constraints imply that the only solution that we may
have is that q̇1 = q̇2 = 0 and that gives us the solution that q1 and q2 are constants
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So what this means is that if we look at our J(y) =
∫ t1
to
q1
√

1 + q̇22dt = q1(to)[t1 − to] .
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So the functional gives us a straight line without any possibility of varying the function q, so in the case
of rigid extremal there is no arbitrary variation in q̄ possible and the only extremal of q̄ = (Co, C1) is a
constant extremal.

We get an extremal which is also the only solution to the problem. So, the rigid extremal case is going to
be handled in the manner that has been shown in this example. Later on, when we state a more general
result, we are going to separate out the case when the problem will have rigid extremals versus the case
when the problems will not have rigid extremals. So, let us state a summarizing result in the form of a
theorem.

Theorem 13: Let J be a functional defined by a1, For a1 we need to go back few slides, we have defined
a1, a2, a3 in the description of the non-holonomic constraint problem, where q̄ = (q1, ......, qn) and L is
a smooth function of the variables t, q̄, ˙̄q and suppose J has an extremum at q̄ ∈ [to, t1] subject to the
boundary condition a2 and the constraint a3

(Refer Slide Time: 6:36)

Further we assume that ∂q
∂q̇j
6= 0, for some 1 ≤ j ≤ n. Then there exist a constant λo and a continuous

function λ(t) not both 0 such that K(t, q̄, ˙̄q) = λoL(t, q̄, ˙̄q) − λ1(t)g(t, q̄, ˙̄q) is a solution to the Euler

Lagrange equation given by
[

d
dt

∂
∂q̇k
− ∂

∂qk

]
K = 0 k = 1, ....., n

Now, we have already included the abnormal case, this is when λo = 0 ⇒ λ1(t) is not identically 0 on

the interval t ∈ [to, t1] and we have d
dt

[
λ1

∂g
∂q̇k
− λ1 ∂g

∂qk

]
= 0 a4

So the moment we are dealing with an abnormal problem we must check this criteria.

(Refer Slide Time: 10:13)
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We are generally going to solve in non-holonomic constraint optimization. For normal problems

Theorem 14: Let J, q̄, L and g be given as in the Theorem 13, If q̄ is a normal extremal, there exists a

function λ1(t) such that q̄ is a solution to d
dt

[
∂F
∂q̇k

]
− ∂F

∂qk
= 0 a5

Where function F = L(t, q̄, ˙̄q)− λ1(t)g(t, q̄, ˙̄q), λ1(t) is uniquely determined such that the above criteria
a5 holds.
We end the discussion on the theory of non-holonomic problems and follow it up with some examples.
A quick example that we have is as follows.

(Refer Side Time: 13:00)
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Example 4: Extremize J(q̄) =
∫ t1
to

(q21 + q22)dt, we need to find the extremal for J subject to the boundary
condition a2, it is the same set of boundary conditions we described in the definition of non-holonomic
problems and the constraint g(t, q̄, ˙̄q) = q̇1 + q2 + q1 = 0

So, this is the constraint that we imposed which is a non-holonomic constraint and we do not know
whether the problem that we posed is a normal or an abnormal problem. So, to find what sort of
problem is that, first we assume that the problem is abnormal. If that be the case, we will be able to
find out the solution to this system, if we use our condition a4 that we have mentioned for abnormal
problem on g.

So, we see that we are going to get two sets of equations that is we solve the Euler Lagrange equation
for g with λ1 also as the unknown, with respect to the first component for k = 1, I get λ̇(t)− λ1(t) = 0
and from here I get a solution that λ1(t) = Coe

t.

For the second case I have K = 2 and from here I get the solution λ1(t) ∂g
∂q2

= 0. since λ1 6= 0 which

means that ∂g
∂q2

= 0.

However notice this constraint tells us that ∂g
∂q2

= 1. So, we arrive at a contradiction. It cannot be 0
and 1 at the same time which means that this is a wrong assumption. Assuming that the problem is
abnormal is a wrong assumption, which means that the problem belongs to the normal category or we
need to solve a5 version of the Euler Lagrange.
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We expect that my Euler Lagrange equation will be satisfied with F = L− λ1(t)g
=q21+q22−λ1(t)[q̇1+q1+q2] and we see that we get a set of two equations for K = 1 we have λ̇1−λ1+2q1 = 0
and for k = 2 we have λ1 − 2q2 = 0

Note that now we have two equations with three unknowns λ1, q1 and q2 So, the third equation is given
by the non-holonomic constraint and that is going to completely solve our system. So, I am going to
directly give the solution and the students are asked to check that this is indeed the solution satisfying
these two equations along with the holonomic constraints.

Solution is as follows
q1(t) = k1 sinh [

√
2t] + k2 cosh [

√
2t]

q2(t) = −(k1 + k2
√

2) sinh [
√

2t]− (k1
√

2 + k2) cosh [
√

2t]

λ1(t) = −2
[
(k1 + k2

√
2) sinh [

√
2t]− (k1

√
2 + k2) cosh [

√
2t]
]
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Let us finally look at one quick example before we wrap up. The example that I have on discussion is
the revisitation of the catenary problem. So, we revisit catenary, and pose it as a Lagrange Problem,
Suppose the length of the cable is L, I am not writing the entire statement of the problem because this
has been done several times but we are posing the problem as a form a non-holonomic problem.

So, suppose the length of the cable is l and given that the end points are (xo, yo) and (x1, y1) such that
given the condition which removes the rigid extremal criteria. So, l >

√
(x1 − xo)2 + (y1 − yo)2 and I

have the potential energy functional given by J(y) =
∫ l

0
yds where s is arc length of the problem such

that ds2 =
√
dx2 + dy2 ⇒ (ds)2 = dx2 + dy2 ⇒

(
dx
ds

)2
+
(

dy
ds

)2
= 1⇒ x

′2
+ y

′2
= 1

Where the primes denote the derivative with respect to s.

let us introduce new sets of variables q1 = x, q2 = y such that arc length parameter ’s’ is the independent
variable and we denote it by t, so we are now going to seek the extremal of this functional

J(q̄, ˙̄q, s) =
∫ l

0
q2ds subject to the constraint x

′2
+ y

′2
= 1

(Refer Slide Time: 23:04)
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Notice that this is our non-holonomic constraint. So, we have posed the problem in the form of a non-
holonomic constraint optimization problem and further we close this problem by stating the boundary
conditions q̄(0) = (xo, yo) and q̄(l) = (x1, y1).

We can quickly solve for the extremal by showing that the abnormal solutions because we have already
mentioned that our length is greater than the distance between the two points. So, we have already
avoided the case of rigid extremals, we do not expect any abnormal solutions which means that there
will be a solution to our system a5.

Euler Lagrange equations are to be satisfied with our function F = L− λ1(t)g = q2 − λ1(t)[q̇21 + q̇22 − 1]
This is set equal to 0 and so we need to satisfy the Euler Lagrange equation for this function.

Let me just quickly write down the set of two Euler Lagrange equation. We get 2λ1(t)q̇1 = k1 and
2λ1(t)q̇2 = k2 + t where my k1 and k2 are constants. I have already integrated my Euler Lagrange once
to get a first order, ordinary differential equation and so, we use, we use this let me call this system as
triangle.

We use this system and the constraint to get the solutions. Let me just write down the entire solution
q1, q2 and λ, students are asked to check that these are indeed the solution, so λ1(t) = 1

2

√
k21 + (t+ k2)2,

q1(t) = sinh−1
(

t+k2

k1

)
+ k3 and q2(t) =

√
k21 + (t+ k2)2 + k4.
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Now, notice that this solution is also of the form of cosh form and whatever problems we have done for
catenary, we have shown that the solution boils down to the hyperbolic cosine function form as well.
So, we end our discussion with just one particular statement by saying that the class of non-holonomic
problems are widespread in mechanics.

However, the non-holonomic constraint problems are more or less avoided because in this class of problems
the Hamilton’s principle are not applicable, so non-holonomic constraints are avoided because in this
class of problems the Hamilton’s principle or the principle of least action which is widespread in this
Newtonian mechanics is not applicable.

So, this I state without going into depth, these are not applicable and for students who want to understand
more in depth about this statement. They are referred to this book by L.A. Pars, “A Treaties on
Analytical Dynamics” and this is by Heinemann publishers. A very classical book published in 1965.
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