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In this lecture, I am going to talk about the other set of constraints namely the holonomic constraints
problems as well as a non-holonomic constraints problems. So far we have looked at functional optimiza-
tion subject to the isoperimetric constraints. So in this lecture, I am going to introduce the two other
different types of constraint
A Holonomic or the algebraic constraints will be of the form
g(t, q̄) = 0, [q̄ = (q1, ....., qn)](n > 2) 1
B Non-holonomic constraints or the differential constraints will be of the form g(t, q̄, ˙̄q) = 0 2

Let us set up the problem in for case A: let J be a functional of the form J(q̄) =
∫ t1
to
L(t, q̄, ˙̄q)dt subject

to the boundary conditions q̄(to) = q̄o and q̄(t1) = q̄1

Now, further for consistency purposes we must have these boundary conditions, the constraint also
should satisfy the boundary condition, otherwise we will run into some trouble. So, we must have a prior
assumption for the consistent purpose that g(t, q̄o) = g(t, q̄1) = 0 for the consistency purpose and also
we assume we are dealing with normal problems.

We assume that 5̄g =
(
∂g
∂q1

, ∂g∂q2

)
6= 0. Let us say in R2 for higher orders that there will be more

components in this expression, so these conditions are for extremals q̄in the interval to to t1 .
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Intuitively it seems that this class of problems is relatively simple to solve. In fact, this is not even a new
set of problems we are discussing, it seems intuitive. Why? Because notice that the constraint possibly
we could use the constraint to solve one variable q. Let us say q1 with respect to the other variable q2

and then replace this constraint problem with the corresponding unconstrained problem of one variable.

So rather than solving a constrained optimization problem with two variables q1 and q2, We could solve
the unconstrained problem with respect to q1. If we could solve q1 as a function of q2 using the constraint,
like we mentioned briefly in the case of finite dimensional calculus. But again, we will see that we run
into some problems.

(Refer Slide time 6:34)

Suppose for normal problems, 3 implies that the holonomic constraint 1 can be used to solve for one
qk’s, then we could possibly change a constrained problem into an unconstraint optimization problem.
The standard Lagrange multiplier, which means it seems intuitively that we have n variable constraint
problem to be reduced to reduce to (n-1) variable unconstrained problem.

It seems that many times it’s possible but many times it not so it may it may or may not work. As we
have seen a several similar scenarios in finite dimensional calculus and and in the case of finite dimensional
calculus, we saw that it may or may not work.

So then what is the alternative out of it? Let us consider the following. Suppose I look at a perturbation
in the extremal, suppose ˆ̄q is an allowable variation, where each of the components ˆ̄qk ∈ C2[to, t1] and
ˆ̄q(to) = q̄o , ˆ̄q(t1) = q̄1

Further I have that the constraint is also satisfied, so when I say allowable variations, these are the set of
conditions that ˆ̄q must satisfy. So when I say that J is stationary or q is an extremal of J stationary at
q̄, then it implies that the necessary condition for extremal is J(ˆ̄q)− J(q̄) will be 0 or at most of O(ε2).

2

194



Only the higher order terms survive, the lower Order terms with respect to ε terms they vanish, we are
guaranteed that we get necessarily extremal and we saw that , If this following integral constraints is
satisfied we get

∫ t1

to

[{
∂L

∂q1
− d

dx

∂L

∂q̇1

}
η1 +

{
∂L

∂q2
− d

dx

∂L

∂q̇2

}
η2

]
dt = 0 I

(Refer Slide time 12:40)

We need some few other assumptions before we move ahead since I have that q̄ is an extremal and it is
fixed and I am also assuming that 5̄g 6= 0 fot t ∈ [to, t1]

This means without loss of generality we can assume ∂g
∂q2
6= 0 ∗

We could assume the otherwise or we could also assume that both components are non-zero.

Since g(t, q̄) = 0 the constraint is satisfied that implies d
dxg(t, ˆ̄q)|ε=0 = 0 = ∂g

∂q1
η1 + ∂g

∂q2
η2

⇒ η2 =
− ∂g
∂q1
∂g
∂q2

η1 ∗∗

Let me state another fact, Recall J(q̄) =
∫ t1
to
Ldt , here we have assumed that L is smooth function,

which implies that for any smooth extremal q̄ implies that E2(L) = d
dx

∂L
∂q̇2
− ∂L

∂q2
, this is also continuous

pf parameter t

Because if L is smooth and it has derivatives up to second order I must have that this operator acting
on L must also produce a smooth function of t, we know that ∂g

∂∂q2
is a continuous function of ’t’, which

means that we can express one continuous function in the form of the other continuous function. As
both are continuous, so the ratio of the two quantities function will also be a continuous function.
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(Refer Slide time 18:32)

Since both of them are continuous functions that means there exists a non-zero continuous function λ(t)
such that E2(L) = λ(t) ∂g∂q2 0r d

dx
∂L
∂q̇2
− ∂L

∂q2
= λ(t) ∂g∂q2 II

If we recall Result I, II, and ** we see that∫ t1

to

{[
∂L

∂q1
− d

dt

∂L

∂q̇1

]
η1 − λ(t)

∂g

∂q2
η2

}
dx = 0

So this is η2 is replaced by the relation between η2 and η1 to come at this particular integral constraint
and again using a version of Lemma 2 discussed in lecture 2 I come to the point where I have the Euler
Lagrange equation for L with the holonomic constraints g for the component q1.

⇒
∫ t1

to

[
∂L

∂q1
− d

dt

∂L

∂q̇1
+ λ(t)

∂g

∂q1

]
η1dx = 0

∂L

∂q1
− d

dt

∂L

∂q̇1
+ λ(t)

∂g

∂q1
= 0 III

Equations II and III are identical but with component q2 replaced with q1.

(Refer Slide time 23:27)
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We are ready to describe Euler Lagrange necessary condition in this situation. In compact form our

necessary condition is
[
d
dt

∂
∂q̇k
− ∂

∂qk

]
F = 0, k = 1, 2 IV

and F = L− λg , where L is the Integrand of the functional and G is the holonomic constraints.

Another reference to all the students where a proper proof based on geometry is provided. So the students
are asked to also refer this particular reference to look at a more detailed geometry based proof for this
situation of functional optimization with holonomic constraints, the author is Giaquinta and Hildebrand.

Students are requested to refer to the books named as calculus of variations part 1 the Lagrangian
formulism and published by Springer in 1996, this is a useful reference for geometry based proof of
these class of problems that I have just shown for the Lagrange multiplier method for with holonomic
constraints.

So I am going to end by discussion on holonomic constraints by summarizing my entire discussion in
the form of a theorem and also providing some example to highlight how this Euler Lagrange necessary
condition is utilized.

Theorem 12: Suppose q̄ = (q1, q2) which is a smooth extremal for the functional J subject to the
holonomic constraints g(t, q̄) = 0 and 5̄g(t, q̄) 6= 0 for t ∈ [to, t1], then ∃ a real valued function λ(t) such
that q̄ satisfies our relation IV which is the Euler Lagrange necessary condition.

(Refer Slide time 28:23)
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Example 1: Extremize J(q̄) =
∫ π

2

0

√
| ˙̄q|2 + 1dt subject to g(t, q̄) = |q̄|2 − 1 = 0, this is a case of

the constrained optimization subject to holonomic constraint with boundary conditions q̄(0) = (1, 0) :
q̄(π2 ) = (0, 1)

Solution: F = L− λ(t)g =

√
| ˙̄q|2 + 1− λ(t)[|q̄|2 − 1] and Euler Lagrange equations are{

d
dt

[
q̇1√
| ˙̄q|2+1

]
− 2λ(t)q1 = 0, ddt

[
q̇2√
| ˙̄q|2+1

]
− 2λ(t)q2 = 0 A

Now we have to solve this system of equation, Also we have the constraint g(t, q̄) = |q̄|2− 1 = 0, Assume
that q1(t) = cosφ(t) and q2(t) = sinφ(t) are lying on a unit circle.

So instead of two variables q1 and q2 now we have just one variable φ to solve and we have the second
functional variable λ(t) So we have two unknowns φ and λ and we have two equations which are given
by A.

(Refer Slide time 33:07)
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q1(t) = cosφ(t) ⇒ q̇1 = (− sinφ)φ̇
and q2(t) = sinφ(t) ⇒ q̇2 = (cosφ)φ̇

After squaring and adding the above two equation we get | ˙̄q|2 = φ̇2 and then from A, we have{
d
dt

[
φ̇ sinφ√
φ̇2+1

]
+ 2λ(t) cosφ(t) = 0, ddt

[
φ̇ cosφ√
φ̇2+1

]
− 2λ(t) sinφ(t) = 0

⇒ sinφ

 d
dt

 φ̇ sinφ√
φ̇2 + 1

+ 2λ(t) cosφ(t)

+ cosφ

 d
dt

 φ̇ cosφ√
φ̇2 + 1

− 2λ(t) sinφ(t)

 = 0

⇒ sinφ
d

dt

 φ̇ sinφ√
φ̇2 + 1

+ cosφ

 φ̇ cosφ√
φ̇2 + 1

 = 0

The students can check d
dt

[
φ̇√
φ̇2+1

]
= 0⇒ φ̇√

φ̇2+1
= Constant

(Refer Slide time 36:56)
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⇒ φ̇ = Co : Constant ⇒ φ(t) = Cot + C1 ⇒ q1(t) = cos (Cot+ C1) and q2(t) = sin (Cot+ C2), now all
we have to eliminate Co and C1 but we have sets of we have two boundary conditions q̄(0) = (1, 0) ⇒
C1 = 2nπ and q̄(π2 ) = (0, 1)⇒ Co = 4m+ 1 (m ∈ Integer) .

Also we know that t ∈ [0, π2 ] , which tells us that it is only possible when you C1 = 0 and Co = 1 and in
that case q1(t) = cos t and q2(t) = sin t ∀ t ∈ [0, π2 ]

So those are my parameter representation of the function and that completes the discussion that this
extremal lies on the rim of a unit circle. Note, when we did not even check whether the problem was

normal or abnormal, but note that if we were to calculate the 5̄g =
(
∂g
∂q1

, ∂g∂q2

)
= (− sin t, cos t) 6= 0 ∀ t ∈

[0, π2 ], which means that we are working with a normal problem in this case.
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