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So then we can look at another generalization of the problem and the second case of the generalized
isoperimetric problem is when we have multiple isoperimetric constraints, then what to do in this case?
Let us set up the problem, Suppose I have ’y’ being the extremal J(y) subject to I1(y) = L1 and
I2(y) = L2, so we have two isoperimetric constraints

let us go back to our discussion on the standard derivation of Euler LaGrange. We were perturbing in
a standard derivation of Euler Lagrange. We were trying to find the first variation δJ(y) and then we
looked at subject to one constraint that is I(y)= L.

Now, given the fact that we have two constraints we cannot perturb freely. We have to perturb in such
a way. We have to perturb our extremal in such a way so that the extremals always satisfy both the
constraints simultaneously, right? So what I just said is the following.
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To meet both constraints and have an arbitrary term in variation of y, we use the correction terms such
that ŷ = y + ε1η1 + ε2η2 + ε3η3 = y + 〈 ¯ε, η̄〉
let me introduce everything in the vector notation ε̄(ε1, ε2, ε3) and ε̄(ε1, ε2, ε3); η̄(η1, η2, η3) where ηk ∈
C2[xo, x1] such that ηk(xo) = ηk(x1) = 0.

So the perturbations are such that they vanish on the boundary that is needed for all sets of perturba-
tion, again approaching in a similar way that we approached earlier for the Lagrange for isoperimetric
constraints with one constraint, we set up the condition for extremal
5̄ [θ(ε̄)−

∑
λkΓk(ε̄)]ε̄=0 = 0 I

These are the respective derivatives with respect to ε1, ε2, ε3

Where θ(ε̄) =
∫ x1

xo
f(x, y + 〈ε, η〉 , y′

+ < ε, η
′
>)dx and

Γk(ε̄) =
∫ x1

xo
gk(x, y + 〈ε, η〉 , y′

+ < ε, η
′
>)dx, k = 1, 2
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We see that I eventually reduces to the condition
∫ x1

xo
ηj

[
∂F
∂y −

d
dx

∂F
∂y′

]
= 0 with F = F - [λ1g1 + λ2g2] .

Notice that the term ”ε1η1” is arbitrary with corrections ε2η2 and ε3η3.

The corrections are due to the respective isoperimetric constant, which means the condition can now
be reduced if we use if you use Lemma 2 in a lecture 2 we can reduce this integral constraint into the
differential constraint with the condition ∂F

∂y −
d
dx

∂F
∂y′

= 0 II

which is the necessary condition for the extremal.

that concludes the necessary derivation of the necessary condition, except we need to remark a little
bit about the existence of the Lagrange multiplier (λ1, λ2) whether under what conditions that these
constants (λ1, λ2) exists.

We are discussing is the condition for the Existence, does this (λ1, λ2) all really exists or not? Such
that the condition to produces an extremal, so what is the condition let us recall the case for single
isoperimetric constraint problem.

We checked the rank of the Jacobian matrix and the rank of the augmented Matrix and it turned out
that the rank in the isoperimetric problem with single constraint and the rank of the augmented Matrix
has an upper bound, which is the rank of the Jacobian matrix and similarly it is the same situation in
this case as well.

Consider Jacobian matrix at 0 which is ε1 = ε2 = ε3 = 0 i.e M(0) =

[
5̄Γ1(θ̄)
5̄Γ2(θ̄)

]
=

[
α11 α12 α13

α21 α22 α23

]
Where αij =

∫ x1

xo
ηj

{
∂gi
∂y −

d
dx

∂gi
∂y′

}
dx and my augmented Matrix will be an additional row replace the

gradient of θ.
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Mf (0̄) =

[
M(0̄)
5̄θ1(0)

]
=

α11 α12 α13

α21 α22 α23

β31 β32 β33


Where βij =

∫ x1

xo
ηj

{
∂f
∂y −

d
dx

∂f

∂y′

}
dx

So the condition for the existence finally we are ready now to state the condition for existence of(λ1, λ2)
is that the rank of the augmented Matrix must be less than or equal to the rank of the Jacobian Matrix,
when that happens we are guaranteed the existence of LaGrange multiplier leading to the extremal y.

We are going to end the discussion on this topic by looking at few Examples: eExtremize J(y) =
∫ 1

0
y

′2
dx

subject to the constraint I1(y) =
∫ 1

0
ydx = 2 and I2(y) =

∫ 1

0
xydx = 1

2 , we have two boundary conditions
y(0) = y(1) = 0 , So we need to extremize J subject to the two constraints I1 and I2.

(Refer Slide time 14:51)
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Solution: We directly look at the Euler LaGrange equation here, we have our extended function

F = f − λ1g1 − λ2g2 = y
′2 − λ1y − λ2xy

If I use my Euler Lagrange equation, I am going to directly write down the ODE that we get
2y

′′
+ λ1 + λ2x = 0

⇒ y(x) = −λ2
x3

6 − λ1
x2

4 + C1x+ Co, so we have four constraints λ1, λ2, C1 and Co. Note that we have
two boundary conditions y(0) = y(1) = 0 and we have two constraints I1 = 2 and I2 = 1

2 .

From these four conditions I can readily find these four constants of integration and as well as the
Lagrange constants, students can directly check that we get the answer λ1 = 408, λ2 = −360, C1 = 42
and Co = 0, that completes the solution to this problem with where extremal is given by this underlined
equation and before we end the discussion on this Example, let us also briefly look at the existence when
we already shown that the values λ1, λ2 but whether these values are unique or not or we could possibly
get another extremal for a different value of λ1, λ2

We just do not know unless and until we check the rank of the Jacobian and the argument Matrix, so
let us look at those quantities.

For an arbitrary perturbation, we see that α1j =
∫ 1

0
ηjdx; α2j =

∫ 1

0
xηjdx; β3j =

∫ 1

0
2y

′
ηjdx =

−λ1

∫ 1

0
ηjdx−λ2

∫ 1

0
xηjdx = −λ1α1j −λ2α2j (directly from our Euler Lagrange equation), which means

that my third row is linearly dependent or the rank of the conclusion is Rank Mf (0̄) ≤ Rank M(0̄), that
concludes the discussion on this example

(Refer Slide time 19:56)
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let us now finally look at Case 3 of the generalization of the isoperimetric problem, that is the case of
several dependent variables, we are talking about functional of the form J(q̄) =

∫ t1
to
L(t, q̄, ˙̄q)dt subject

to the isoperimetric constraint of the form I(q̄) =
∫ t1
to
g(t, q̄, ˙̄q)dt

we have that L and g smooth, they have derivatives up to continuous derivatives up to second order and
let us say that q̄ is a smooth extremal for J subject to I with my boundary condition q̄(to) = q̄o and
q̄(t1) = q̄1, so we have sets of vector set of two boundary conditions each of them are vector conditions
and with my isoperimetric constraint of the form I(q̄) = l

Result I am going to directly state the result because the proof follows the same similar case for the
problem with one variable that q̄ is an extremal such that there exists a constant λ so that q̄ satisfies

the equation the n-Euler Lagrange equation of the form
[
d
dt

∂
∂q̇k
− ∂

∂qk

]
F = 0, k = 1., ......n, i.e we have

n constraints and function F = L− λg let us quickly look at an example to this problem.
(Refer Slide time 23:29)
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Example 3: ( Revisit Dido problem) Determine the curve γ length L(> 2) so that I remove the case of
rigid extremals containing the points P−1 = (−1, 0) and the points P1 = (1, 0) such that γ is closed and
the line segment from P1 and P2 is closed.

We do not say anything beyond that and the area enclosed is maximum. So essentially what we have
done is, in the earlier version of Dido’s problem we were trying to stipulate the condition that a part
of the curve lies on the x axis. So now we have lifted we have lifted that condition so we have lift the
restriction.

Restriction that part of γ lies on the x-axis. Well, certainly it passes through (-1, 0) and (1, 0) but now
the other half can very well be below the Y-axis, which means that we can have a much more generalized
problem in this case.

So, in this case now the area functional is going to be described by Green’s theorem because this is a
much more general scenario.
Green’s theorem says that area functional is given by J(q̄) = 1

2

∫ t1
to

(xẏ − yẋ)dt and (̇) = d
dt , withe

isoperimetric constraints I(q̄) =
∫ t1
to

√
ẋ2 + ẏ2dt = l

(Refer Slide time 27:37)
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Now I have a case of constraint optimization with two dependent variables and we directly set the system
of two Euler LaGrange equations;

d

dt

[
−λẋ√
ẋ2 + ẏ2

− 1

2
y

]
− 1

2
ẏ = 0⇒ −λẋ√

ẋ2 + ẏ2
− y = CO 1

d

dt

[
−λẏ√
ẋ2 + ẏ2

+
1

2
x

]
+

1

2
ẋ = 0⇒ −λẏ√

ẋ2 + ẏ2
+ x = C1 2

I can directly square and add from these two equations and see that extremal will follow this particular
curve (x− C1)2 + (y − Co)2 = λ2

So x and y are such that they lie on a circle with radius λ and we have three this equation has three un-
known C0, C1 and λ but we also have two boundary conditions plus we have one isoperimetric constraint
and that will fully determine the system.

So I end my lecture I end by discussion at this point and in the next lecture, I am going to talk about
the situation where we deal with constraints of the form which are algebraic or holonomic constraints as
well as non-algebraic a differential or non-holonomic constraints.
Thank you very much.

8

192


