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Let us now look at another Example: f = x - y; g = x2 + y2 = 0 So, again my Lagrange Multiplier
method for this objective function and this constraint g = 0 . The Lagrange Multiplier method gives me
two equations 1− 2λx = 0 a
and −1− 2λy = 0 b
but g = 0 has only one solution, 0 because it is a real valued function and it will achieve only one solution
when both x and y vanishes. So, now, it turns out that 0 is a solution to g, but 0 is not a solution to
the Lagrange multiplier method. So, further check that the gradient at this point also vanishes. Even
in the previous example, the gradient vanishes. We could go and check that. But in this problem, the
gradient vanishes.

So this is an abnormal problem, where the only point we are getting does not satisfy the Lagrange
Multiplier, 0 an extremum? Well, technically, yes, but it is not satisfying the Lagrange Multiplier. So,
what I am saying is technically, so that is why I am using the word technically because I cannot show it
via the Lagrange method that this is the minimum, because this is the only point that we have under
consideration minimum or not.

So, technically 0 is an extremum because it is a minimum of the constraint. So, it is a extremum although
I can show that 5̄(0, 0) 6= 0, we see that the gradient is (1, -1), so it is never zero, but the only choice that
we have is this point which means that the role of f is not much, it is the constraint which is governing
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the final answer here.

So, this is a case where f the objective function is passive, and it is a constraint which dictates my critical
point. In this case, this is my critical point under consideration. So, we have all sorts of problems for
the abnormal case. So, let me, just summarize our entire discussion for the abnormal case.

(Refer Slide Time: 3:39)

So, I am going to extend Theorem 6, my result for the normal case to the abnormal case by introducing,
I need to develop a similar to the Lagrange Multiplier method for normal case, I need to develop an
equivalent Lagrange Multiplier for the abnormal case so that it holds for these cases as well.

we extend Theorem 6 by introducing an additional multiplier λo and we consider that h = λof+λ1g and
if 5̄g 6= 0 that is a normal problem, we can very happily choose λo = 1 that is the standard Lagrange
Multiplier method, this is the case of normal problems.

Suppose if I have 5̄g(= g) = 0, then we are in the abnormal problem case and we have various scenarios,
we can still enforce 5̄h = 0 for finding the critical points by requiring λo5̄f = 0 .

We have seen that in the abnormal case there were two subcases, one the objective function passive, the
other constraint being passive. So, if I have the case where f is passive, so if I have passive objective
function, then in that case, that 5̄f 6= 0 the objective function is passive, I am going to choose λo = 0

So, that this particular condition still is enforced, on the other hand, if I have passive constraint or
passive g, then and 5̄f = 0, I can choose any λo or λ1, this condition is going to be enforced. So let me
now club all this summarized result in the form of a theorem.

(Refer Slide Time: 6:49)
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Theorem 8: [ Extended multiplier rule] let Ω ⊂ Rn and f : Ω→ R and g : Ω→ R be smooth functions,
If f has a local extrema at this point x̄ ∈ Ω subject to the constraint g(x̄) = 0, ∃ (λo, λ1) not both zero
such that 5̄ [λof(x, y)− λ1g(x, y)] = 0
Suppose, we are in this situation then we have extended our standard Lagrange Multiplier using another
multiplier λo in addition to the existing multiplier λ1.

Now I think this background of finite dimensional calculus using Lagrange Multiplier is sufficient for us to
look at problems involving constrained functional optimization. So, we are going to start our discussion
on Isoperimetric problems consists of finding extremals of J satisfying Boundary condition
let J : C2[xo, x1]→ R be a functional of the form J(y) =

∫ x1

xo
f(x, y, y

′
)dx γ1

(Refer Slide Time: 10:18)
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For Isoperimetric problem, I need to describe a constraint, it consists of finding extremals of J satisfying
the boundary conditions, That is a fixed end point conditions y(xo) = yo : y(x1) = y1 γ2

and we have an additional integral constraints of the form I(y) =
∫ x1

xo
g(x, y, y

′
)dx = L γ3

This particular functional is equal to a fixed value L is the constraint

So the problem now is how to find the extremum in this constraint optimization. Well, let us recall how
did we find the extremum in the unconstrained case, we use to perturb our function by introducing a
perturbation of the form εη and then we use to do the Taylor series expansion of the perturbed function
and then integrate and then cancel and so on so forth.

Now, the fact that we have a constraint, we cannot just perturb freely, we have to introduce an additional
perturbation, so, this particular constraint is always satisfied. So, what I just said is γ3 places an
additional restriction, so let me just separate this out, restriction on the perturbation, it places an
additional restriction on the perturbation εη.

We introduced the perturbed function of the form, the perturbed function of the form ŷ = y+ε1η1+ε2η2,
What have we done here is we have now introduced an additional perturbation ε2η2 which is able to
satisfy ŷ also satisfies the constraint γ3.

Now we have two switches ε1 and ε2 such that the constraint is also satisfied, where my ε case are small,
I take them relatively small so that my first variation involves only the first term or the second term of
the Taylor Series, which is the order ε term and η ∈ C2[xo, x1] such that ηk(xo) = ηk(x1) = 0.

So, what I have said is the following ε2η2 is selected such that ŷ satisfies γ3, Now we are ready to find the
first variation of the functional and hence the extremum of the functional in this case the Isoperimetric
case.

(Refer Slide Time: 15:20)
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, Now, my functional will involve two unknown constants ε1, ε2, functional J(ŷ) = θ(ε1, ε2)
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and constraint I(ŷ) = Γ(ε1, ε2)

We see that the results in the Lagrange Multiplier dictate that for any critical point (ε1, ε2) ∃ λ such
that 5̄ [θ(ε1, ε2)− Γ(ε1, ε2)λ] = 0 ∗

In particular check out that ε1 = ε2 = 0 satisfies both the functional and the constraint and this is indeed
a critical point because both the functional as well as the functional attains an extremal that vanishes,
but the functional attains an extremal as well as the constraint is also satisfied. So, this becomes I(y),
where I(y) is an extremal.

So, plugging in ε1 = ε2 = 0, we are going to get the extremal of the functional, so certainly this is a
critical point. So, let us look at the x component of this gradient. So, when we take the gradient, so let
us consider the ε1 component of *, this is actually a set of two equations, the derivative with respect to
ε1, the other with respect to ε2.

Consider the ε1 component of * equals to
∫ x1

xo
η1

[
∂f
∂y −

d
dx

∂f

∂y′ − λ
{

∂g
∂y −

d
dx

∂g

∂y′

}]
dx = 0 since my per-

turbation η1 is arbitrary, I am going to use lemma 2 of lecture 2 to invoke the fact that integral constraint,
well, this is set to 0 actually.

because of the * here, the integral constraint can be reduced to the differential constraint as follows that
∃ λ ∈ R such that the extremal satisfies the following differential equation which is[

d
dx

∂
∂y′ − ∂

∂y (f − λg)
]

= 0 γ4.

So, this operator on the function f − λg where f is objective function and g is the constraint.

Now, consider ε2 component of * we are going to again get the same relation γ4. So, we get no additional
equations. So, what have we found is that for Isoperimetric problem, the necessary condition is γ4 or
the Euler Lagrange equation. So, let me wrap up this lecture by giving two major results and try to
summarize the case of Isoperimetric problem.

(Refer Slide Time: 21:55)
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Theorem 9 Suppose J has an extremum, suppose J has an extremum at y ∈ C2[xo, x1] which is a second
order differentiable function subject to the boundary condition γ2 and the Isopermetric constraint γ3

Then suppose further y is not an extremal of I, we are making sure that this particular condition is
making sure that the gradient of the Isoperimetric constraints do not vanish at ε1 = ε2 = 0 which is
equivalent to the finite dimensional constraint that 5̄g 6= 0.

So, we are making sure that you are not dealing with the so called rigid extremal. So, y is not an
extremal of the constraint itself, then there exists a λ ∈ R such that the extremal y satisfies the equation
γ4 or the Euler Lagrange equation γ4 So, this is for the normal problem because in the normal problem
we have assumed that y is not an extremal of I. How about the abnormal problem?

(Refer Slide Time: 24:13)
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Theorem 10: Suppose J has an extremum at y ∈ C2[xo, x1] subject to the boundary condition γ2
and the Isoperimetric constraint γ3, then ∃ two numbers (λo, λ1) not both 0, such that d

dx
∂

∂y′K − ∂
∂yK

equation holds, where function K = λof − λ1g. So we have extended our previous result in Theorem
9, by introducing a new function with this new set of two constants λo and λ1, this covers all sets of
problems including normal problems.

If y is not an extremal of I the constraint we can take λo = 1 (normal problem) and the result reduces to
Theorem 9. On the other hand, if y is an extremal of the constraint I, then we can take λo = 0 and if I
have that y is an extremal of both I as well as J, then it turns out that both λo and λ1 are undetermined.

We do not worry about what is undetermined, we do not care about what is the value of λo and λ1. It
just does not matter. So, it will not play any role in our optimization. In the next lecture I am going to
look at a few other examples of this isoperimetric problem, including the normal as well as the abnormal
problems.
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