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Generalization/Numerical Solution of Euler Lagrange Equations Part 5

We are going to end the discussion on the development of the theory in this case by giving few more
tips.

(Refer Slide Time: 0:21)

let me just highlight few more tips. So, ways the improve the Euler or Numerical solution, numerical
solution to Euler Lagrange method, some of the natural tips would be to increase or make the grid finer
or to increase the number of grid points or so, well so that is the standard suggestion but some of the
non-standard suggestions are to use better quadrature rules.

Here we have just used rectangle rule to change the integral into summation. So, we could use better
numerical quadrature. Some of the quadratures available are trapezoidal, we could use trapezoidal
quadrature or we could use Simpson’s rule or we could use even higher order quadrature like the Romberg
rule or we could use adaptive grids.

So far the examples I have shown is for a uniform grid. We could also use adaptive grids. Grids will
become finer where the functions changes rapidly and non-uniform or adaptive grids. So, more details
can be found in this text books. So, students are asked to refer to this text book for more details on the
numerical solutions of Euler Lagrange via the Euler’s and other higher order methods.

This book is has the title Calculus of Variation with Applications in Physics and Engineering by Robert
Weinstock. So, what we have is the following. let us look at another method or the numerical solution.
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The method that I intend to highlight is the Ritz method, Now, what exactly is this method?

This method tells us that we could rather than approximating by taking the values of the function at
finite number of grid points. We could use set of basis function to approximate our extremum function.
So, we could use a set of orthogonal basis function and expand our functional in terms of the basis
function. So, the idea is as follows.

We are going to approximate our variable using family of linearly independent functions and let us say
our family is as follows: {φi}ni=0, where our function is yn(x).

So, I am going to approximate y, so y the unknown of the problem is going to be approximated by
yn(x) = C1φ1(x) + ........ + Cnφn(x) so then again this sort of an approximation again reduces to the
problem of function optimization where the unknowns now are these constants C1 to Cn.

(Refer Slide Time: 5:33)

We reduce the problem into standard multivariate minimization problem for unknowns C ′is. Solution
and all we do is differentiate our functional with respect to the C ′is and set it equal to 0.

So, where my function is now an approximate function of yn. so y has been approximated by yn, which
means this particular quantity to begin with was an integral. So, this was a functional of this integral of
this following quantity. And this is now a function of the variable C1 to Cn. So, then, well, let me just
write down all the points and I am going to highlight this method with an example.

So, further we choose in our choice of φi, notice that, I have started with φo and I has started with
a coefficient 1 and φ1 to φn. So, we choose φo(x) such that the boundary conditions are satisfied and
further we choose φj(x) such that with homogenous boundary condition.
Which means that we choose our φj such that φj(x1) = 0 where j = 1.....n, and then note that φj ’s could
be from the standard set of orthogonal functions like power series or polynomials or it could be the trick
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functions like sin and cos. It could also be the Bessel function and so on and so forth.

(Refer Slide Time: 9:16)

So, then we assume a little bit of analysis before we look at some examples, let us say that why is the
extremal to the problem at hand, we assume that without loss of generality the extremal we are talking
is minimum. So, in that case, we must have that the value of the functional F (y) < f(ŷ) where ŷ is the
perturbation of y where ŷ is within ε neighbourhood of y, close enough to y.

What I want to show here is that the value of the functional which is the value of the function that
we get from the Ritz method will be if it is very close to the original extremal found from the Euler
Lagrange. Then the value of the function from the Ritz method will give an upper bond to the value of
the functional or the exact value of the functional.

So, what I just said is the following: so, what I have is F(y), so we assume that our approximate solution,
our approximate function yn is inside the ε neighbourhood of y, which means the approximation from
the Ritz method is sufficiently close enough to the exact extremal. So, in that case, what we have is
F (y) ≤ F (yn) which is the value obtained by evaluating the values of these C ′is

As I just said the approximation gives an upper bound as we can see from here, so care must be taken
for a careful choice of φ′s and not only that the higher the value of φ′s, we expect that the closer is the
approximate solution to the exact solution. So, let us let us look at an example.

(Refer Slide Time: 12:37)
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Examples: find the extremal of F(y) =
∫ 1

0

[
y
′2

2 + y2

2 − y
]
dx with y(0) = y(1) = 0 . So, I know that my
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Euler Lagrange method, my EL equation reduce to the following ODE for this problem and, well, let us
go back to few slides to check what was the solution, we get the following ODE and now if we want so
we are in a position that whatever solution that we get by the Ritz method, we can check it with the
solution of the Euler Lagrange to see how close is it to the exact solution. So, if we were to use the Ritz
method, so let us say this is the solution. Ritz method shows that this is yn(x) = φo(x) +

∑n
i=1 Ciφi(x).

We take φo(x) = 0 and because by taking this value, it the yn’s immediately are going to satisfy the
boundary condition and {φi}ni=1 = xi(1− x)i So, this is what we choose in our basis function. It can be
shown that these are linearly independent basis functions.

So, all we need are linearly independent basis functions. So, then let us look at a simple approximation.
So, we are going to approximate y with y1 = C1φ1 = C1x(1− x)

⇒ F1(C1) = F (y1) =

∫ 1

0

[
C2

1

2
(1− 2x)2

C2
1

2
x2(1− x)2 − C1x(1− x)

]
dx

C2
1

2

∫ 1

0

{
1− 4x+ 5x2 − x4

}
dx+ C1

∫ 1

0

(−x+ x2)dx

then once we perform all the necessary integration, I am going to get the following result.

(Refer Slide Time: 17:18)

, F1(C1) =
C2

1

2

(
11
30

)
− C1

6 , we solve for C1 we take dF1

dC1
= 0, we used standard multivariate minimization

argument or optimization argument.

⇒ 11C1

30 −
1
6 = 0 ⇒ C1 = 5

11

⇒ y1 = 5
11x(1− x)
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this is my approximate extremal that we have obtained using the Ritz method. We can check that the
value of the functional evaluated at y1 is coming out to be this following constant which is minus this
quantity and by the analysis that I have just shown few slides back, this is the upper bound, this is the
upper bound of the solution to the Euler Lagrange, the solution to the Euler Lagrange equation which
was highlighted few slides back.

So, before we move on, I just want to highlight how does this approximate solution compares with the
exact solution? So, if we were to plot y versus x, the exact solution is as follows. So, this is the y exact or
this is also equal to the y obtained from the Euler Lagrange method and the solution that we obtained
above which is my y1 which is this particular solution is quite close to the exact solution.

So, even with this approximation with one basis function, it just close enough approximation to the exact
solution. So, alternatively the choice of φ is ours. The choice of the basis function is ours and sometimes
the choice is good while some other times the choice is poor. So, so let us look at another choice of the
same function.

(Refer Slide Time: 20:15)

So, alternatively suppose we were to choice the following basis function. Suppose we were to choice
φ1 = sin (πx). Notice that φ1(0) = φ1(1) = 0. So, a similar exercise of finding the approximate solution
leads us to y1 = C1φ1 = 4

π(π2+1) sinπx.

So, use the Ritz method and we will see that the solution comes out to be the following and if we were
to now plot the exact solution with respect to let us say the approximate solutions. So, let us say this is
my exact solution; the approximate solution in this case is poorer. So, which means in this case we have
a poor choice of φ1. So, this φ1 is not a good choice.

So the moral of the exercise that we have done so far is that the choice of the basis function φi’s matter.
So, I am not going to go into more detail as to what sort of φi’s will be suitable for what sort of
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functional but I am going to definitely give a reference which talks in depth about the choice of the Ritz
basis function.

So, first of all the choice of φi’s matter and also the approximation becomes better using larger families
of φi’s. That is this advice is irrespective of the method whether we use Euler, whether we use Ritz
method or another method that we are going to describe shortly. So, use larger and larger family to get
better approximation. So, let us look at an example.

(Refer Slide Time: 22:56)

So, I am going to highlight an example. I am going to solve the same catenary problem via the Ritz
method, my functional which is the potential energy functional in the catenary problem is as follows

Wg(y) = mg
∫ x1=1

xo=−1 y
√

1 + (y′)2dx and with the boundary condition y(−1) = y(1) = yo.

So what we have done, we are solving a symmetric problem, where the height of the extremal is the same
at both the boundary points. So, we all know over the disclose of the last few lectures that the solution

to the catenary problem via the Euler Lagrange equation is in the following form y(x) = C1 cosh

(
x
C1

)
let us assume further that our yo = 2 So, y(1) and y(-1) is equal to 2. We are assuming some value, some
numerical value so that gives my 2 values of C1. So, we already know the solution, when we impose the
boundary condition, y(-1) = y(1) = 2 , we get two values of C1, C1 is either 0.47 or C1 is also 1.697.

We have already discussed that if your y is above a certain critical value, I am going to get 2 solutions.
Not necessarily both of them minima. So, in that case, we can immediately see which one is minima or
which one is maxima. So, at the value c1 is equal to 0.47, I see that F1 at C1 the value of the functional
F(y) comes out to be 4.36. So, we can just plugin C1 and plug the extremal y here into the functional
of our potential energy function.
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and let me use the same rotation Wg(y), it comes out to be this value and at C1 equal to the other value,
I see that my potential energy functional comes out to be the following quantity. So, this one is the
minima and this one is the case of maxima. So, let us see what happens when we find the solution via
the Ritz method. So, we are going to in our Ritz method, we are going to approximate via polynomial
functions.

So, I am going to say that my y(x) =≈ yn(x) = ao + a1x+ a2x
2 + ..... Now, before we move ahead, we

also know that the problem is symmetric. We stated that to begin with which means that the solution
that we are assuming must also be an even function to account for the symmetry.

which means due to symmetry of the boundary condition, y(x) is even, which means that my odd
coefficients a1 = a3 = ... = 0

(Refer Slide Time: 28:06)

So, let us now approximate y(x) ≈ y2(x) = ao + a2x
2 So, let us use the least order approximation and

see how does the Ritz method compares? So, further we know that y(1) = yo = 2 which we will use later
on.

In fact, let me plug the value here. So, this means that y(x) now is, I can eliminate with this boundary
condition, I can eliminate one of the constants a2, so y(x) becomes y(x) ≈ ao + (2 − ao)x2, similarly I
can find y

′
(x) ≈ 2(2− ao)x 1

So, then I substitute all these into my functional of Wp(y), the functional that I had and find out the
expression, So, we substitute 1 into our functional Wp(y) and integrate. We can very clearly integrate
with respect to the variable x.

The variable x can be integrated out and we are going to be left out with a function of 1 variable ao. It
is easier said than done because we will see that this function is very-very complicated. So, integrate to
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get Wp(ao). We see that, let me just show you that the function that is generated here by showing you
some of the terms. So, these terms are generated from the software Maple.

So, Maple gives when we feed all these approximations into the functional in this software Maple, we see
that my explanation Wp(ao) is the following. So, let me write few terms, in fact, I am never going to
complete writing all the terms. So, let me just show what is the complexity that we have.

Wp(ao) = −1

4
ao

[
− 8
√
π(4− 4ao + a2o) +

(
−4 ln(2)− 1− ln (4− 4ao + a2o)

)
−
√
π(....) + 428 terms

]
So, notice that complexity that we have. So, what I am trying to show here is finding the optimum
solution of Wp or finding the optimal value of ao by hand is almost impossible right? We cannot just
take that first derivative and second equal to zero and find the solution analytically.

However, if you feed this entire expression in the software itself and draw the figure Wp(ao)of versus ao,
we can see where is the maximum or the minimum. So, when we do that, we plot numerically, let me
show the plot in the next page.

(Refer Slide Time: 32:44)

We plot numerically and highlight that Wp(ao)of versus ao. We see that we get the following function,
you get the following curve where we obtain this maxima at ao = 0.41 and the minima is obtained at
ao = 1.69 , we can see that the local min is at ao equal to point, 1.69 and compare the local min for C1

which was at 1.697 for the exact function to the Euler Lagrange equation.

and the local max that we get here is ao = 0.41 and again compare it with the local max at C1 = 0.47
. So, it seems that this case my minimum and the maximum are quite accurately captured by the Ritz
method of the original extremal. So, this question is, so this question that we have to ask, when is this
case always true or what I am asking is the following, what I am asking is the nature of the approximate
extrema identically equal to the exact extrema.
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So, we saw the exact solution, the solution to the Euler Lagrange and the solution obtained by the Ritz
method and we saw that the maxima and the minima they are almost identically equal. So, this question
is the nature of the approximate extrema equal to the exact extrema always, is this always true, the
answer to this is depends on how good is the approximation.

So, the answer to this is if I have that approximation is near, when I say near the near is in terms of a
certain norm. So, near to the actual extrema, if the approximate and further there is no other extrema,
there is no other extrema nearby. So, we do not have multiple solutions to the Euler Lagrange equation.
Otherwise, the approximation to the via the Ritz method might give erroneous answers and finally the
functional that we are optimising is smooth so that the derivatives exist, then the answer is yes.

So, then yes that is the type of approximate extrema is identically equal to the exact extrema. So, that
completes this particular example completes the discussion of the Ritz method. The students are asked,
I am going to provide a reference towards the end and the students are asked to solve more examples
via the reference as well as our homework modules and the tutorials.
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