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In today’s lecture I am going to talk about the numerical solutions of Euler Lagrange equation. So,
far we have discussed about the various forms of Euler Lagrange Equation and also we have found the
solution to the Euler Lagrange Equation purely using analytical techniques. So, in today’s lecture, I am
going to talk about what happens when we are stuck in a situation when the Euler Lagrange Equation
are no longer solvable analytically.

So, in that case we take the help of numerics and I am going to discuss 3 different methods today in this
lecture on how to solve and later on in this, the course of this lecture, I am also going to provide some
other references for people interested in developing higher order numerics. So, the first method that we
will talk about in this class today is regarding the Euler’s Finite Difference method.

So, this seems to be the simplest method that we can adopt in finding the solutions of the Euler Lagrange
Equations numerically. Let me abbreviate this method by EFDM. So, the basic idea of this method is
as follows: the idea is, we are going to approximate our function or the function which involved in this
functional optimization is the integrant.

so we approximate the integrant and hence the integral into finite grids points. So, instead of now
solving the, finding the optimum value, the optimum function of an integral, we are now going to find
the optimum value of a summation. So, the integral in the functional changes to a summation over the
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particular set of grid points.

The moment we discretise our functional the integral into finite set of points, our integral becomes a
summation and then the problem reduces to the standard optimization problem. The problem reduces to
a standard optimization case in multivariate calculus. So, the way we approach maximizing or minimizing
a function in regular vector space that is the same way that we adopt in this strategy.

and finally the way to do it is, after we have discretised our functional, all we have to do is to find the
optimal solution by setting the derivatives equal to 0, the derivatives with respect to the unknowns equal
to 0. So, these 3 points reflect the basic idea of the numerical solution. Now, let me just build a little
bit more background before I am going to highlight this methodology using some examples.

let me just say that, we have a finite set of points, so the way we numerically approximate our problem
is that we use finite set of mesh points a = xo < x1 <, ..... < xn = b

So, our integral is from a to b. And we approximate our derivative y
′
(xi) = ∆yi

∆xi
= yi+1−yi

xi+1−xi
, that is

the Euler’s Forward Difference Approximation that we are using to approximate the derivatives at the
points of our points.

Finally the third rule involves, we use the standard rectangle rule to change our integral into summation

F (y) =
∫ b

a
f(x, y, y

′
)dx and we change it using into a summation which is as follows

=
n−1∑
i=0

f(xi, yi,
∆yi
∆xi

)∆xi = F̄ (ȳ) = F̄ (yo, y1, ......, yn)

(Refer Slide Time: 6:41)
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The idea is to treat the maximization of this function using the standard multivariate calculus. So,
before we do that, let us notice that this particular function has (n + 1) arguments.

However, we have 2 arguments corresponding to the boundary condition, so yo and yn are the values
of y at xo and xn given by the corresponding boundary condition. So, there are (n - 1) unknown, this
as a standard maximization problem. Minimization of a function of (n - 1) variables. The two of the
variables are just the boundary conditions.

We find the solution to this problem by taking the derivative of f with respect to the unknowns
∂F̄
∂yi

= 0, i = 1, 2, ...(n−1), this is the set of equations that we solve to find the extremum of this function.

Further let us assume that the grids are uniform, right now we are going to make this assumption so as
to simplify our calculations, assume uniform grid such that ∆xi = b−a

n = ∆x, that is required in this
method is to just find the maximum of this function using the standard first derivative test.

(Refer Slide Time: 10:44)

Example 1: To find the extremal F (y) =
∫ 1

0

[
y
′2

2 + y2

2 − y

]
dx subject to the boundary condition

y(0) = 0 = y(1), we find the extremum of this function using the Euler’s Finite Difference method let
us see what is the exact solution given by the Euler Lagrange method, the extremum y is given by the
Euler Lagrange equation which reduces to y

′′ − y = −1

Homogenous solution of y
′′ − y is y = Aex + Be−x and the particular solution is given by yp = 1 So,

y(x) = yc + yp = Aex + Be−x + 1, we have 2 unknowns A and B and they can be found using these 2
boundary conditions and let me just write down the final answer after finding the constants

y(x) =

(
e−1 − 1

e− e−1

)
ex +

(
1− e−1

e− e−1

)
e−x + 1

now we are going to discretise our problem, our functional and see that Euler Langrage method all is
written, is well approximated by the Euler Finite Difference method or not. So, let us look what happens
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when we use the finite difference method. let us as shown in the previous slide let us take a uniform
grade.

We take 1 xi = 1
n , i = 0,1,.....n, Take yo = yn = 0 and Take ∆x = 1

n

(Refer Slide Time: 15:39)

∆yi = yi+1 − yi; y
′

i =
∆yi
∆x

= n(yi+1 − yi)

y
′

i

2
= (y

′

i)
2 = n2

[
y2
i+1 − 2yiyi+1 + y2

i

]
So, we are ready to substuite all this values in our original functional. So, the Euler’s Finite Difference
method reduces to the following function. We see that my vector function is as follows

F̄ (ȳ) =
n−1∑
i=0

f(xi, yi, y
′

i)∆x =
n−1∑
i=0

{
n2

2

[
y2
i+1 − 2yiyi+1 + y2

i

]
+
y2
i

2
− yi

}
1

n

So, what we can do is we can further include the two unknowns coming from the boundary that is yo and
yn we are going to include the end points condition, they are already 0, we include them as a Lagrange
condition.

so students who have done standard multivariate calculus should be aware of the Lagrange Multiplier
method, if they are not we are going to a very brief revision very soon. So, using the Lagrange Multiplier
method we write down the new vector function.
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H̄(ȳ) =
n−1∑
i=o

n

2

[
y2
i+1 − 2yiyi+1 + y2

i

]
+

(
y2
i

2
− yi

)
1

n
+ λoyo + λnyn

we have included those using these additional constants known as the Lagrange Multiplier, the next step
to the solution involves, we take the derivative of this vector function with respect to unknowns and set
them equal to 0, since we have included even yo and yn we assume that they are unknown, but later own
we are going to use a boundary condition to eliminate them. So, if we were to assume that yo and yn
are unknown we now have n + 1 unknowns, in fact n + 3 unknowns including λo and λn.

(Refer Slide Time: 21:10)

∂H̄(ȳ)

∂yi
=

 n(yo − y1) +
y−1
o

n + λo i = 0
n[2yi − yi+1 − yi−1] + yi−1

n i = 1, ......n− 1
n(yn − yn−1) + λn i = n

∗

we have n + 3 variables and those variables are from yo to yn and the constants λo, λ1, λn and n + 3
equations

* is giving us n + 1 equations plus the fact that yo = yn = 0 coming from the boundary gives us the
additional 2 equations to solve. So, the system is fully solvable. The number of unknowns are equal to
the number of equations and we should get a unique solution.

So, then all I have to do is to set up the linear system Ax = b, we solve for the system that gives us
the unknowns y′is and those y′is are the appropriate solution to the extremal and that is the end of the
solution methodology, but just to highlight how this solution compares with our exact solution. We have
done, I have done some numerical simulations and I would like to compare how does it matches with the
exact solution.
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In this case, this is our example 1. So, if we were to plot the exact solution, exact solution was shown
in our previous slide. The exact solution looks like this and if we take only 4 grid points, we see that 3
of them will be interior, there will be 2 which are on the boundary and we get a very gagged type of an
appropriate solution. So, the approximate solution satisfies the exact value of the functional, only at 5
different points including 2 at the boundary.

However, if we do the same exercise comparing with the exact solution with let us say higher number
of grid points. Let us say n equal to 20, we see that the solution is much more smooth and closer to
the exact solution. So, that has all being, that is just what I am showing what we have got through the
numerical output. So, the moral of the story here is the finer the grid point, the closer is the Euler’s
Finite Different solution to the exact solution.

In fact, we will show now next that the Euler solution converges to the solution given by the Euler
Lagrange Equation in the lim∆x→0 or in the limit that the number of grid points approaches infinity.

(Refer Slide Time: 26:09)

So what we are showing is the convergence of the Euler’s Finite Difference method. Our vector function is
as follows F̄ (ȳ) =

∑n−1
i=0 f(xi, yi,

∆yi

∆xi
)∆xi Now we want to differentiate, the Euler’s method differentiates

the vector function with respect to y.

⇒ 0 =
∂F̄

∂yi
=
∂f

∂yi

(
xi, yi,

∆yi
∆xi

)
+

1

∆x

∂f

∂yi

(
xi−1, yi−1,

∆yi−1

∆x

)
− 1

∆x

∂f

∂yi

(
xi, yi,

∆yi
∆x

)

=
∂f

∂yi

(
xi, yi,

∆yi
∆xi

)
−

[
∂f
∂yi

(
xi, yi,

∆yi

∆x

)
− ∂f

∂yi

(
xi−1, yi−1,

∆yi−1

∆x

)]
∆x

6

127



Now take the lim∆x→0 on this right hand side involves this term as well as this whole term and we see
that this quantity is nothing but

⇒ 0 = lim
∆x→0

{R.H.S} =
∂f

∂y
− d

dx

(
∂f

∂y′

)
we see that this is nothing but the Euler Lagrange equation. So, what I have shown here is in the
limit the Euler’s Finite Difference method gives a solution which approaches the solution of the Euler
Lagrange method.
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