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Lecture 13

Generalization/Numerical Solution of Euler Lagrange Equations Part 1

Today in this lecture I am going to continue our discussion on the Generalization of Euler Lagrange
Equations.

(Refer Slide Time: 0:23)

We will primarily continue our discussion that we started in the previous lecture Euler Lagrange Equa-
tions. So, this is a continued portion of the previous lecture, in this lecture we are going to do 2 major
cases, namely, the generalization which involves Euler Lagrange Equation containing functions of several
dependent variables but only one independent variable and the other ways, one dependent variable but
several independent variables.

So, let us look at these 2 cases. We have seen generalization; the first case was functionals containing
derivatives of order higher than 1. So, this is my second case, so in this case we are going to discuss how
to generalize Euler Lagrange for functionals containing several independent variables, Euler Lagrange
containing several independent variables but but one dependent, well, several dependent variables but
one independent variable.

And then the second case will be the other way round, in this case, let me just give a brief example, so
for example, let us look at the motion of a particle in 3D space will require us to track 3 independent,
well, 3 components of position, let us say they are given by (x(t), y(t), z(t)) all as a function of time t.

So, this is one such case where we have 3 dependent variables x, y, z and they are all functions of the
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independent variables which is the time in our case and we are going to see that this also follows the
standard case of the Beltrami Identity, the example that I have just mentioned. So, let us now start
building up the the background to figure out the necessary condition in this case. So, first we have to
describe the space where this extremal is going to be taken.

We describe C2[to, t1] the set of all continuously differentiable functions up to second order within interval
[to, t1], we describe the space which denote the set of all vector functions q̄ : [to, t1] → Rn So, the the
domain of this vectors is picked up from the interval which is mainly the time and the range is all the
components of this vector q̄ which is Rn.

So, where each of these components of q̄ are C2 differentiable, so where qk ∈ C2[to, t1] the moment
we describe the space from where we are getting the vectors functions, you also have to describe the
norm because that is how we are going to measure the difference when we calculate the variation of the
functional, we describe the following norm

‖q‖ = max
k=1,2,..,n

sup
t∈[to,t1]

|qk(t)|

Consider functional of this form J(q̄) =
∫ t1
to
L(t, q̄, ˙̄q)dt where (.) = d

dt and also that this L that I have
described the integrant of this integral which is a function of this vector quantities, it is also smooth and
has derivatives up to second order.

[Refer Slide Time: 7:13]

So, what I am just saying is L has continuous derivatives up to second order with respect to (t, qk, q̇k)k=1,2,..,n

Let qo, q1 ∈ Rn, now while we are describing our functional, notice that we also have to describe the end
points because we have a fix end points case.

problem consists of finding fixed end point problem consists of finding the extremal of J from the set
described by S where S =

{
q̄ ∈ C2[to, t1]|q̄(to) = q̄o, q̄(t1) = q̄1

}
So, then let us also further describe the perturbation of q̄, let ˆ̄q = q̄ + εη̄ so this is now perturbation in
each of the components and where I describe my perturbation function η̄ = (η1, η2, ....., ηk) which belongs
which to the set H =

{
η̄ ∈ C2[to, t1]|η̄(to) = η̄(t1)

}
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So, whatever we basically describe, for example, the set S, the perturbation set H in the standard
derivation of Euler Lagrange, we have now extended it describe a similar sets for the vector functions.
So, then now I am ready, so the moment I have described my perturbation, I am ready to expand my
integrant in terms of the extremal q̄ using Taylor Series.

(Refer Slide Time: 11:21)
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For small ε, the Taylor Series implies that

L(t, q̄, ˙̄q) = L(t, q̄ + εη̄, ˙̄q + ε ˙̄η)

= L(t, q̄, ˙̄q) + ε

[
n∑

K=1

(
ηk
∂L

∂qk
+ η̇k

∂L

∂qk

)]
+O(ε2)

⇒ δJ = J(ˆ̄q)− J(q̄) = ε

∫ t1

to

n∑
K=1

[
ηk
∂L

∂qk
+ η̇k

∂L

∂qk

]
dt+O(ε2)

Next step of finding the extremal in this particular case. we change this integral in such a way so that we
can pull out these perturbations functions ηk and to do that we again further use integration by parts,
so well, before that we have to understand that each of these represents, each of these η′ks they represent
the components of the perturbation vector function.

We must say that the necessary condition for q̄ to be an extremal is that we must have
δJ(q, q̄) = 0 I′

So, we need to figure out the Euler Lagrange equation satisfying I′ , we also want to highlight the fact
that the Euler Lagrange equation for this n component problem is slightly more complicated but we
can resolve the issue as follows. So, I′ is more complicated, more complex than E.L. equations for one
dependent variable case, but we need to, but we carefully select out perturbation eta prime which is in
our set of perturbations functions H.

Consider η1 ∈ H1 = {(η, 0, 0, ..., 0)|η(xo) = η(x1) = 0} ∈ H,

So, certainly this perturbation is also belongs to our perturbation set H which is this one. Now, if we
use this particular perturbation, we see that our Euler Lagrange equation reduces to the 1 dependent
variable case and the dependent variable being q1.
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(Refer Slide Time: 17:33)

d

dt

∂L

∂q̇1
− ∂L

∂q1
= 0

that is Euler Lagrange equation with respect to the first variable for the choice of perturbation that
we have just chosen, so that is my necessary condition. Similarly, we can choose perturbation for other
components, so similarly describing perturbation sets for other components, we are going to look, we are
going to find that each of the component.

So, we can repeat this procedure like we did for the first component to the second, third, so on, and we are
going to get the following set of Euler Lagrange equations, the first Euler Lagrange describes the extremal
for the first component, the second Euler Lagrange equation describes for the second component, and so
on so forth, the nth Euler Lagrange equation satisfies for the nth component.

We are going to see that this is a system of second order differential equation for n unknowns where the
unknowns are q1, q2, ..qnwhich is the necessary condition for our generalized case with multiple dependent
variables. So, we have found Euler Lagrange which is a system of Euler Lagrange equation. So, let me
just recap so far what we have said in the form a theorem or a result.

(Refer Slide Time: 20:39)
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Theorem 5: Let J : C2[to, t1]→ Rn be a functional such that J(q̄) =
∫ t1
to
L(t, q̄, ˙̄q)dt

where q̄ = (q1, q2, ....qn) and the function L in side this integral has continuous derivatives up to second
order with respect to t, qk, q̇k, k = 1, 2,...n

and then further we describe the set S =
{
q̄ ∈ C2[to, t1]|q̄(to) = q̄o, q̄(t1) = q̄1 ∈ Rn

}
and further we

describe the set of perturbations as H but then the result is, then q̄q is an extremal of J in S if
d
dt

∂L
∂q̇k
− ∂L

∂qk
= 0, where k = 1, 2,...n

First example, so we need to extremize J(q̄) =
∫ t1
to

{
q̇1

2 + (q̇2 − 1)2 + q21 + q1q2
}
dt, we see that in this

case the functional has an integrant which has 2 dependent variables q1 and q2 and both depend on the
independent variable t, with boundary condition q̄(0) = qo, q̄(1) = q1.

to find the extremals we have to write down two Euler Lagrange equation

∂L

∂q̇1
= 2q̇1;

∂L

∂q̇2
= 2(q̇2 − 1);

∂L

∂q1
= 2q1;

∂L

∂q2
= q1

So these are the different derivatives which are appearing in our Euler Lagrange and we are ready to
write the system of Euler Lagrange.

(Refer Slide Time: 25:47)
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Euler Lagrange for both the variables, the first one after plugging in the values, we get the first one is
q̈1 − q1 − 1

2q2 = 0 and q̈2 − 1
2q1 = 0 So, then the next set of steps involve solving for q1 and q2 and

standard way to do that is to eliminate one of the variables, so let us eliminate q1 by differentiating the
second equation twice with respect to t and substituting q̈1 from the second equation.

what we get is an equation purely for q2, so we get 2q2
IV −2q̈2− 1

2q2 = 0 So, then the next step involved
is we can look at an equation, we can look at a solution for q2 of the form, let us say q2(t) = eµt, we
can plug this form here and we are going to get a characteristic equation for µ which is polynomial
2µ4 − 2µ2 − 1

2 = 0

this is a fourth order polynomial equation, we will expect 4 solutions, the first two solutions are as

follows, µ = ±
√

1
2 + 1√

2
∈ R and the second set of solutions are given by µ = ±

√
1
2 −

1√
2

= im (m ∈ R)

So, what I want to show here is that the second set of 2 equations are purely imaginary so it is i times
some quantity which is real number, So, when we write, when we plug all these values of q, µ, we are
going to get that q2(t) = C1e

µ1t + C2e
µ2t + C3e

µ3t we get the following linear combination, and we see
that after plugging in, after simplifying we expect that since the third and the fourth solution, they are
occurring in complex conjugates, we can always write the solution in the form of sin and cos.

So, I get that this is also equal to C3, let me say that we will have a different constant altogether, so
C

′

3 cos (mt) + C
′

4 sin (mt), now we have got a family of extremals, I can find the C ′
is are found from the

boundary condition q̄(0) = qo and q̄(1) = q1 and each of them are set of two equations so we have a total
of 4 equations for 4 unknowns. And that completes the discussion of this example.

(Refer Slide Time: 30:14)
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Another example, let us look at a special case, where L does not explicitly depend on t, that is the case
where we should have a Beltrami Identity instead of the full Euler Lagrange equation and that identity
must be the reduced order Euler Lagrange equation. So, in the special case L, the integrant in the
functional does not depend on t explicitly.

So, I have that H =
∑n
k=1 q̇k

∂L
∂q̇k
− L = Constant, we see that when L does not contain explicitly the t,

the independent variable then in this case the Beltrami Identity is of this following form where we have
the summation over is variables q′ks so this is my Beltrami Identity.
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