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Let us now move ahead with another topic and another point of discussion namely, the generalization
of Euler-Lagrange equation. So, I call this as case C. So, what I am going to discuss in this third
case is extensions of Euler-Lagrange equations or in short, I would like to generalize my Euler-Lagrange
equations for functionals containing integrants having higher derivatives and several other generalizations
which we will see one by one.

So, under this let us look at the first type of generalization, let me call this as Case 1, in this case we
look at functionals containing higher order derivatives. So, in this case points that are to be noted that
we can certainly extend our result of the Euler-Lagrange equation to functions, which are the integrands
of the functionals and which contains higher order derivatives, let us say derivatives like y

′′
, y

′′′
and so

on so forth.

Euler-Lagrange equations can be extended, can be extended to functionals with higher order derivatives
and further the another issue that we have to consider is the moment we are considering higher order
derivatives, our function space will be restricted.

So, instead of searching for our extremal in C2[xo, x1] we have to look at C3 or C4 and so on so forth.
So, our function from which the extremal comes out, the function space must be restricted to account
for higher orderderivatives.
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let us now consider the functional J(y) =
∫ x1

xo
f(x, y, y

′
, y

′′
) I

We have now a function containing derivatives up to second order. So, the moment we introduce extremals
having continuous derivatives up to second order we have to provide extra set of boundary conditions.

My fixed point boundary conditions y(xo) = yo; y
′
(xo) = y

′

o, y(x1) = y1; y
′
(x1) = y

′

1 which means
now earlier we were assuming that the extremal y had continuous partial derivatives up to second order.
Now, we are going to assume that the extremals y will have continuous partial derivatives up to third
order or in other words, y comes from the space C4. So, let me show how is it possible.

(Refer Slide Time: 5:04)
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So, what we have is the following: Assume f has continuous partial derivative up to third order with
respect to the variables x, y, y

′
and y

′′
and this means that y must come from C4[xo, x1] why C4?

Because this is equivalent to saying that y double derivative must come from C2[xo, x1]. Because we
have derivatives of y up to second order and for our Euler-Lagrange equation we need the variable with
the highest derivative to be at least C2 or the variable that we have y must be C4.

So, then we have to rewrite our function space. So, now my S becomes

S =
{
y ∈ C4[xo, x1]|y(xo) = yo, y(x1) = y1, y

′
(xo) = yo, y

′
(x1) = y1

}
H =

{
η ∈ C4[xo, x1]|η(xo) = ηo, η(x1) = η1, η

′
(xo) = ηo, η

′
(x1) = η1

}
So, the perturbation set is such that the values as well as the values of the first derivative at the
boundary points vanish. So, with this we are ready to describe our Euler-Lagrange equation or the
necessary condition for the existence of the extremal. So, suppose I has a local extrema at the function
y ∈ S, and let us say that the perturbation to this extrema is ŷ = y + εη .

From Taylor series expansion, I can rewrite my integrand in I,

f(x, ŷ, ŷ
′
, ŷ

′′
) = f(x, y + εη, y

′
+ εη

′
, y

′′
+ εη

′′
)

= f(x, y, y
′
, y

′′
) + ε

[
η
∂f

∂y
+ η

′ ∂f

∂y′ + η
′′ ∂f

∂y′′

]
+O(ε2)

(Refer Slide Time: 10:27)
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0 = δJ = J(ŷ)− J(y) = ε

∫ x1

xo

[
η
∂f

∂y
+ η

′ ∂f

∂y′ + η
′′ ∂f

∂y′′

]
+O(ε2)

So, then we do, redo the exercise that we did in the standard Euler-Lagrange case, that is we are going
to change the second and the third term using integration by parts and then we apply the boundary
condition

η
′ ∂f

∂y′ = −
∫ x1

xo

η
d

dx

∂f

∂y′ dx

η
′′ ∂f

∂y′′ =

∫ x1

xo

η
d2

dx2
∂f

∂y′′ dx

= ε

∫ x1

xo

η

[
∂f

∂y
− d

dx

∂f

∂y′ +
d2

dx2
∂f

∂y′′

]
dx = 0

we see that the extremal, again we use a similar variation of lemma 2 that we showed in our lecture 2 to
come to the fact that, we must have that the extremal is 0 provided this variation is 0 or which means
that this variation must be 0 for epsilon sufficiently small and from here we come to the fact that using,
I must say that using the generalized lemma 2 discussed in our lecture number 2, we arrive at the fact
that

E(x) ≡ ∂f

∂y
− d

dx

∂f

∂y′ +
d2

dx2
∂f

∂y′′ = 0

So, this is the extension of the Euler-Lagrange equation for functions containing derivatives up to second
order, we call this extended Euler-Lagrange as Euler-Poisson equation, I denote it in shorthand nota-
tion as EP equation. So, the extended Euler-Lagrange equations for functions containing higher order
derivatives are also known as Euler-Poisson equations. So let us look at an example in this situation.
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let us look at this particular example. find the extremal for J(y) =
∫ 1

0
[y

′′2−2ρy]dx, where ρ is a constant

and y(0) = y
′
(0) = y(1) = y

′
(1) = 1

we have to find the extremal for this functional. Notice that this functional contains derivatives up
to second order and my Euler-Lagrange equation or my generalized Euler-Lagrange or Euler-Poisson
equation, EP equation, it reduces to after plugging in this expression for f in Euler Poisson, you see that
my equation reduces to the following fourth order ODE or differential ordinary differential equation,
which has the solution of the form

y(x) =
ρ

4!
x4 + C1x

3 + C2x
2 + C1x+ C4

where Ci are constant So, using all these we have four constants, and we have four boundary conditions,
we can very conveniently eliminate all these unknowns of the problem. If we use the fact that the first
of the two boundary conditions y(0) = y

′
(0) = o⇒ C3 = C4 = 0

Further, if we use the fact that y(1) = y
′
(1) = 0 ⇒ C1 = −

(
1 + ρ

12

)
and C2 = 2 + ρ

24 It is all about a

matter of algebra to solve all these constraints and finally, expression for the extremal is the following
polynomial:

y(x) =
ρ

24
x4 −

(
1 +

ρ

12

)
x3 +

(
2 +

ρ

24

)
x2

this is my extremal to this fourth order functional. So, that completes the solution to this example. So,
let us look at some specific cases in this generalized scenario.

(Refer Slide Time: 18:52)
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So, there are two specific cases I want to highlight, let me call he cases as A and B. The first case is if
my functional J(y) does not contain y explicitly then my Euler-Poisson reduces to the following equation

d
dx

(
∂f

∂y′′

)
− ∂f

∂y′
= constant. It comes via the direct removing certain unnecessary terms, where we have

involved derivatives of y and then integrating once to get, to come to this point.

So, instead of solving the fourth order ODE, we are solving a second order ODE, or third order ODE
in this case, The second special case is, if my functional J(y) does not contain x explicitly, then my
Euler-Poisson reduces to the generalized Beltrami identity. So, I have this is the case where we have the
generalized Beltrami identity to be satisfied, which is basically the following function

H(y, y
′
, y

′′
) = y

′′ ∂f

∂y′′ − y
′

[
d

dx

∂f

∂y′′ −
∂f

∂y′

]
− f = Constant

So, that is my generalized Beltrami identity that we instead solve in this special case, again this is a
reduced order Euler-Poisson equation,

let us look at an another example in this discussion, let us extremize this functional

J(y) =

∫ x1

xo

(1 + y
′2

)2

y′′ dx

we see that we do not have an explicit dependence on y in this particular integrand. So, we, this particular
integrand falls under the case scenario A.

So, what we can do is that my Euler-Lagrange or my Euler-Poisson equation reduces to
d
dx

∂f

∂y′′
− ∂f

∂y′
= constant, So, once we plug in all the values of the expression we should be able to solve.

However, there is a further simplification that we can perform. Notice that this integrand is also inde-
pendent of any x. So, there is no explicit x dependence on this integrant, which means that we can also
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use the Beltrami identity. So, what we said is the following:

(Refer Slide Time: 23:20)

H(y
′
, y

′′
) = y

′′ ∂f

∂y′′ − y
′

[
d

dx

∂f

∂y′′ −
∂f

∂y′

]
− f = C2

⇒ y
′′ ∂f

∂y′′ − y
′
C1 − f = C2

⇒ −2(1 + y
′2

)2

y′′ − y
′
C1 = C2 ∗

So that is a simplified expression. So then, let κ1 = −C1

2 and κ2 = −C2

2

we are again going to solve it parametrically or we are going to find y as a function of a parameter and
x as a function of the same common parameter and that will be our final solution, just first rewrite this
expression in terms of these new constants

y
′′
[κ1y

′
+ κ2]

(1 + y′2)2
= 1 ∗∗

we solve double star parametrically, we solve double star parametrically from now on by assuming by

again assuming that y
′

= tanψ ⇒ 1 + y
′2

= sec2 ψ
(Refer Slide Time: 27:52)
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y
′′

= sec2 ψψ
′ [

κ1 cosψ sinψ + cos2 ψ

]
ψ

′
= 1 ∗ ∗ ∗

Integrate *** we get

x = κ3 + 2κ2ψ + κ2 sin 2ψ − κ1 cos 2ψ 4∗

Note: y
′

= tanψdx⇒ dy = tanψdx, Using 4* and Integrate w.r.t to ψ we get

y = κ4 + 2κ1ψ − κ2 cos 2ψ + κ1 sin 2ψ 5∗

So, my 4* and 5*are parametric solution given by (x(ψ), y(ψ)) So, we are going to end the discussion in
this lecture by mentioning one important result, namely that the Euler-Poisson equation can be further
generalized for functionals containing integrands of higher and higher derivative. So, what I meant to
say is the following:

(Refer Slide Time: 32:46)

Let us look at this most general case J(y) =
∫ x1

xo
f(x, y, y

′
, y

′′
, ........y(n))dx the function integrand con-

tains the derivatives of y up to the order n, the extremal y satisfies the Euler-Poisson equation which is
of this following form.

Notice that this conveniently reduces to the Euler-Lagrange as well as the Euler-Poisson equation for
functionals containing derivatives up to second order. So, this is the general version of Euler-Poisson.

(−1)n
dn

dxn

(
∂f

∂yn

)
+ (−1)n−1 d

n−1

dxn−1

(
∂f

∂yn−1

)
+ .......+

∂f

∂y
= 0

The last quantity that we will have is the derivative of partial of f with respect to y and this is set equal
to 0. So, this is my generalized Euler-Poisson for functions containing derivatives of any order. let us end
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the session by mentioning that we have several other ways to generalize the Euler-Poisson namely, how
about looking at the case where we have multiple dependent variables or we have multiple independent
variables, we will see that those sort of equations frequently arise in continuum mechanics, especially in
planetary motion, as well as standard Newtonian mechanics. Thank you for listening for this lecture.
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