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the first example that I have in this lecture course is,

J(y) =

∫ x1

xo

√
x2 + y2

√
1 + y′2dx

notice that J depends on all the three variables x, y and y
′
. Which means if we were to solve for the

extremal in Cartesian coordinates, look at the complexity of this Euler-Lagrange equation.

d

dx

[√
x2 + y2

1 + y′2
y

′

]
− y

√
1 + y2

x2 + y2
= 0

notice that this Euler-Lagrange equation is a mess, this is extremely difficult to solve.

You can still attempt but there is an easier way out. The easier way out is by the observation that
we have the formation of this expression

√
x2 + y2 So, if you recall that in polar coordinate my radius

variable r is nothing but
√
x2 + y2 suggests that we should possibly change this functional in polar

coordinates r, θ or r, φ.
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x = x(φ, r) = r cosφ and y = y(φ, r) = r sinφ

⇒ ∂(x, y)

∂(r, φ)
=

∣∣∣∣xr yr
xφ yφ

∣∣∣∣ =

∣∣∣∣ cosφ sinφ
−r sinφ r cosφ

∣∣∣∣ = r 6= 0

r is not 0. Otherwise the transformation is bogus. It is not a non-singular transformation. So, this clearly
shows that the determinant is non-singular and hence we are ready to transform our original functional
in Cartesian frame into the polar frame functional.

(Refer Slide Time: 4:28)
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So, then let us further assume like we assume in Cartesian frame, suppose r = r(φ) so r is dependent on
φ. Similar to y dependent on x that we had in the Cartesian frame.

dy

dx
=
yφ + yrrφ
xφ + xrrφ

=
r cosφ+ rφ sinφ

−r sinφ+ rφ cosφ

⇒
√

1 + y′2dr =
√
r2 + rφ2dφ

Newfunctional K(φ, r, rφ) =

∫ φ1

φo

r
√
r2 + rφ2dφ =

∫ φ1

φo

F (r, rφ)dφ

So we can peacefully use the Beltrami identity because the explicit dependence on φ is missing in this
integrand. So, we are going to use Beltrami identity and reduce, thereby reducing our Euler-Lagrange
equation to first order ordinary differential equation. So, Beltrami identity

H(r, rφ) = rφ
∂F

∂rφ
− F =

rrφ
2√

r2 + rφ2
− r
√
r2 + rφ2 = Constant = C1

(Refer Slide Time: 8:40)
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⇒ rφ = r

√
C1

2r4 − 1

⇒ φ =

∫
dr

r
√
C1

2r4 − 1

⇒ φ+ C2 = −1

2
sin−1

[
−1

C1r2

]
∗

So, the extremal is in this form although it is not clear what is the form of this extremal directly from
this expression. So, we do a little bit of simplification, we assume another set of constants. So, let new
constraints κ1 = 1

C1
and κ2 = −2C2

∗ :
κ1
r2

= sin [−2φ+ C2] = −2 sinφ cosφκ2 + (2 cos2 φ− 1) sinκ2

In Cartesian coordinate κ = −2xyκ2 + (x2 − y2) sinκ2

So, that is the extremal that we have found in Cartesian frame. So, notice that we have now found
the extremal in the Cartesian frame without ever solving the Euler-Lagrange equation in the Cartesian
frame. So, it is via the polar frame that we are able to systematically integrate our equation for the
extremal. So, doing a necessary, performing a necessary coordinate transformation helps to simplify the
problem, and the choice must be judicious.

(Refer Slide Time: 12:36)
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So, let us move ahead. So, then the second topic I want to discuss is about the existence of extremal
solutions. So, well, just a brief motivation. So far we have just written Euler-Lagrange without even
bothering about whether the solution exists or not, we have went ahead and solved the Euler-Lagrange
equations in all the examples that we have seen so far.

However, we have not worried, whether even after we are able to solve the Euler-Lagrange, whether the
solution makes any sense or not or whether the constants in in the solution, in the family of solutions
that we get in Euler-Lagrange there they do exist any constraints or not which satisfies the boundary
condition. So, what I just said is the following: Even if the two-parameter, even if the two-parameter
family of extremals are, which are the solutions of my Euler-Lagrange equations can be found, we are
able to integrate, well, there is no guarantee, there is no guarantee that the constants C1 and C2 can
be found; there is no guarantee that the constantC1 and C2 can be found which satisfies the boundary
condition, which satisfies the boundary condition.

So, let us look at an example to highlight what I just said. Let us go back to our example for the geodesic
on a plane. Well, this is my second example of this lecture series.

Example 2: J =
∫ (1,1)

(0,0)

√
1 + y′2dx , this is the geodesic problem or the problem of the shortest path and

this is the geodesic on plane problem.

And we get that the solution is y = x for this problem, which was a unique solution satisfying the
boundary condition given by these points on the integral. However, let us look at another example,
which was also done in our previous lecture. Notice this particular case

J =

∫ (1,1)

(0,0)

(y
′2
− ky2)dx
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and we know that the solution to this problem was

y(x) = C1 cos
√
Kx+ C2 sin

√
Kx

and we have further seen that the solution is going to exist such that it satisfies the boundary condition
and there would be two cases. If your

√
k 6= integer then y identically 0 is the unique solution that we

have.

And we also saw that if
√
k = Integer then then y = C2 sin

√
Kx, giving us infinitely many solutions

depending on this family of parameters C2,so we could either have a unique solution or infinitely many
solutions.

(Refer Slide Time: 17:37)

Now, let us look at another example that we have seen in the past lecture. An example of the

catenary J(y) =
∫ x1

xo
y

√
1 + y′2dx, we know that the general extremal of this catenary problem is

y(x) = C1 cosh

(
x−C2

C1

)
We have just found out the solution to this problem in two lectures back

and let us now further look at a class of this solution.

So, without loss of generality, let us assume that our boundary condition xo = 0 and x1 = 1. So, in that

case my yo = C1 cosh

(
−C2

C1

)
by putting xo = 0 and y1 = C1 cosh

(
1−C2

C1

)
by putting x1 = 1 So, then

the next stage to look at a simplified version of the solution is to change the set of constraints.

let us now introduce another set of two constraints, κ1 = C1 and κ2 = −C2

C1
. So, in that case my

y0 = κ1 coshκ2 and y1 = κ1 coshκ1 + κ2, again if we go back to the catenary problems, here we have
the coordinate xo and x1 we have fixed that, Let us also further fix yo and we are going to describe y1
in terms of yo .
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let us assume yo = 1 So, y1 will be described in terms of yo, if we do that, notice that

y1 =
cosh[cosh (κ1) + cosh (κ2)]

cosh (κ2)
= F (κ2)

So, 1
κ1

= cosh (κ2) that comes from this particular expression here by plugging in yo = 1. So now we
have expressed my solution y1 purely as a function of κ2, one constant function. Now, if we were to plot
this function i, let us say we were to plot F (κ2) versus κ2

And I am just showing the solution and approximate solution from κ2 from a range minus 2.5 to 1, this
plot has been found using standard softwares. It turns out that this curve has exactly one minima, let
us call this as kappa star. So between minus 2.5 to 1, there is just one minima κ∗ . So the question says,
this question that we have to ask is, is there always a solution to this catenary problem? The answer is
not necessarily, look at the case.

(Refer Slide Time: 23:06)
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So, suppose look at case 1. So, suppose you have y1 < F (κ∗) So, notice that in this diagram if the
solution falls below this value, I see that there will be no solution, y1 will not be an external to the
catenary problem.

On the other hand, if I have that y1 = F (κ∗) then I have a unique solution to my extremal problem
given by the value of κ∗, the constant. On the other hand, if I have y1 > F (κ∗) we see that there are
two solutions possible, one will be a minima and one will be a maxima.

So, we do not know which one is minima or maxima, but later on when we introduce the second variation
or the sufficient conditions for the functionals, we will revisit this catenary problem to show that one of
the solution is indeed a minima and the other is a maxima. So, the conclusion is as follows:

So, we conclude the discussion on this topic, and the conclusion we draw is as follows that even if
our analytical solutions of Euler-Lagrange equations, analytical solutions of Euler Lagrange equations
are not available, it turns out that the existence uniqueness, well, the existence uniqueness, uniqueness
criteria highlights, the existence uniqueness criteria highlights the range of special parameters, highlights
the range of special parameters containing regions of either no solutions or unique solution or infinitely
many solutions. That is what we saw in the above example of the catenary.

So, at least we can find regions of the parameter space, where we have to search for our solutions to
the Euler-Lagrange. So, existence uniqueness is also an important issue to consider while looking at the
solution to the Euler-Lagrange equation.
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