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In this module we are going to study a simple Criteria for Riemann Integrability. A 

consequence of this criteria is the fact that any continuous function will be Riemann integrable. 

In a later module we shall study the Lebesgue integrability criteria that completely 

characterizes all Riemann integrable functions. 

So, theorem, let 𝑓: [𝑎, 𝑏] ⟶ 𝑅 be a bounded function, 𝑓 is Riemann integrable, if and only if 

for each ε >  0, we can find a partition 𝑃ε such that 𝑈(𝑓, 𝑃ε) − 𝐿(𝑓, 𝑃ε) ≤ ε. The proof of this 

is very straightforward. Proof: Suppose 𝑓 is Riemann integrable, we will first deal with that 

direction. 
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Suppose 𝑓 is Riemann integrable, then that just means that inf 𝑈 (𝑓, 𝑃) = sup 𝐿 (𝑓, 𝑃), that is 

the definition of a function being Riemann integrable. We just means that we can find partitions 

𝑃1, 𝑃2, such that 𝑈(𝑓, 𝑃1)– 𝐿(𝑓, 𝑃2) < ε. 

Why is this the case? Well this infimum is equal to this supremum that means, there must be 

some quantity here and some quantity here, that get arbitrarily closer and closer right. So, for 

this fixed ε we should be able to find a partition 𝑃1 such and a partition 𝑃2, such that 𝑈(𝑓, 𝑃_1 −

 𝐿(𝑓, 𝑃_2) <  ε, ok. 

Now, it is easy to find a common refinement. So, 𝑈(𝑓, 𝑃1 ∪ 𝑃2) − 𝐿(𝑓, 𝑃1 ∪ 𝑃2) < ε why, 

because by going to the common refinement you are only going to decrease this quantity, sorry 

you are only going to increase this quantity and decrease this quantity. Therefore, the difference 

is only going to get lesser. So, you have 𝑈(𝑓, 𝑃1 ∪ 𝑃2) − 𝐿(𝑓, 𝑃1 ∪ 𝑃2) < ε, ok. 
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So, this proves one direction, conversely assume that for each ε >  0, we can find; we can find 

𝑃ε such that 𝑈(𝑓, 𝑃ε) − 𝐿(𝑓, 𝑃ε) < ε. Then, it follows; it follows immediately, that 𝑈(𝑓) =

𝐿(𝑓), why is this the case? Well, because 𝑈(𝑓)– 𝐿(𝑓) ≤ 𝑈(𝑓, 𝑃ε) − 𝐿(𝑓, 𝑃ε), right. 

Because, this is the infimum of the quantities 𝑈(𝑓, 𝑃ε) and 𝐿(𝑓) is the supremum of the 

quantities. Therefore, 𝑈(𝑓)– 𝐿(𝑓) ≤ 𝑈(𝑓, 𝑃ε) − 𝐿(𝑓, 𝑃ε) < ε.  

So, what we have shown is 𝑈(𝑓) and 𝐿(𝑓) can be made ε close. Hence by a theorem, which 

we proved way back in week 1 or week 2, I think week 2 we are done, ok. So, because 

𝑈(𝑓)– 𝐿(𝑓) < ε we are done; we are done. 
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So, this was a rather simple criteria in fact, it just rephrases the fact that 𝑈(𝑓) = 𝐿(𝑓),  in a 

slightly different language. But, this is very useful as can be seen in the next theorem.  

Theorem: Any continuous function 𝑓: [𝑎𝑏] ⟶ 𝑅 is Riemann integrable. 

Now, here is a situation where we will not just use continuity, we will use uniform continuity 

in the proof. So, first of all observe that 𝑓 is bounded because it attains its maxima and minima 

it is going to be bounded. We have already seen that the images has to be also going to be a 

closed interval. Observe that 𝑓 is bounded and uniformly continuous, ok. 

So, what we are going to do is, we are going to produce for each ε a partition𝑃ε, such that the 

previous criterion is satisfied. So, fix ε >  0. And choose δ >  0 as per the definition of 

uniform continuity. This just means, as a recall, this should be digested by you and flowing in 

your veins by now. 
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But, just to recall if |𝑥– 𝑦| < δ,  𝑥, 𝑦 ∈ [𝑎𝑏], then |𝑓(𝑥)– 𝑓(𝑦)| < ε, ok. So, we have now got 

this condition of uniform continuity that sort of says that the moment points are close enough 

to each other then the values are going to be close to each other also. 

Now, this will immediately show that we can find a partition that we want. Let 𝑃 be any 

partition; be any partition or rather let 𝑃ε be any partition such that each Δ𝑥𝑘 < δ. That just 

means that consecutive points in this partition are less than δ distance away, ok. 

Now, what will this show? Well, let us compute 𝑈(𝑓, 𝑃ε) and 𝐿(𝑓, 𝑃ε), ok. This is just going to 

be ∑𝑀𝑘Δ𝑥𝑘
 here, this 𝑥𝑘 looks like a subscript Δ𝑥𝑘; 𝑘 running from 1 to 𝑛. Recall capital 𝑀𝑘 

is the maximum and this is going to be ∑ 𝑚𝑘
𝑛
𝑘=1 Δ𝑥𝑘. 
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Now, we have this. What we are really interested in from the previous criterion is 𝑈(𝑓, 𝑃ε) −

𝐿(𝑓, 𝑃ε),  right. And a moments calculation will tell you that this is ∑ (𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘
𝑛
𝑘=1 , well, 

that was easy enough. Well, what do you know about 𝑀𝑘 − 𝑚𝑘? Well, this is a continuous 

function; this is,  𝑓 is a continuous function. 

So, consider 𝑓 on [𝑥 ,𝑘−1 , 𝑥𝑘] ok, this  𝑓 attains its maxima and minima. That means, there are 

points in this interval  [𝑥 ,𝑘−1 , 𝑥𝑘] and such that 𝑓 of that point is capital 𝑀 𝑘 , and another 

point in this interval  [𝑥 ,𝑘−1 , 𝑥𝑘] or rather I reverse the thing its  [𝑥 ,𝑘−1 , 𝑥𝑘] sorry about that  

[𝑥 ,𝑘−1 , 𝑥𝑘]. 

There are points in this interval such that 𝑓 of that point is capital 𝑀𝑘 and 𝑓 of that other point 

is small 𝑚𝑘. We can find points here simply because, this function is continuous and this is a 

compact set therefore, f will attain its maxima and minima, ok. But, that just forces, by our 

choice of δ and the fact that  𝑥𝑘 − 𝑥𝑘−1 has to be less than δ, because, we chose the partition 

that way. 
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We must have; we must have capital 𝑀𝑘– 𝑚𝑘 < ε. And the beauty of this fact is this is true for 

all 𝑘; all 𝑘 from 1 to 𝑛, irrespective of the choice of 𝑘 this is have to be this will have to be 

true. That just means ∑ (𝑀𝑘 − 𝑚𝑘)Δ𝑥𝑘
𝑛
𝑘=1 < ε ∑ Δ𝑥𝑘

𝑛
𝑘=1 .  

And just thinking what this ∑ Δ𝑥𝑘
𝑛
𝑘=1  is you will be able to see that this is just ε(𝑏– 𝑎). Now, 

what we have shown is given any ε we can find a partition 𝑃  such that, 𝑈(𝑓, 𝑃ε)– 𝐿(𝑓, 𝑃ε) <

ε(𝑏– 𝑎), by 𝐾 − ε principle; by 𝐾 − ε principle, the previous criterion previous theorem 

guarantees that 𝑓 is integrable, ok. 

So, this completes the proof; the proof was an application of several properties of continuous 

functions, please go through the proof carefully and see where you see; where each property of 

continuous functions were applied. To even begin the proof we had to use the fact, that 

continuous functions on compact sets will have to be bounded. We have defined integrals only 

for bounded functions.  

This is a course on real analysis and you have just watched the module on criterion for Riemann 

integrability. 


