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Much of the mathematics in this course is motivated by real world problems. By real world 

problems I actually mean problems from physics. The notion of derivative was solely designed 

to answer this question. Given a complicated function, can I approximate it reasonably well by 

a linear function? The linear function is much easier to work with than the complicated function 

and therefore, we often use the properties of the derivative to simplify the situation. 

In a similar manner, the notion of integral also came to solve a physical problem, what is area 

right. Now, if you think about it in school you were just told that the area of a rectangle is the 

product of its sides. You might have derived the area of several other figures using this fact 

that the area of a rectangle is length into breadth. Like parallelograms or triangles etcetera, you 

might be able to find out the area formula for those using the area of a rectangle. 

If you think about it more carefully from the perspective of an axiomatic approach that we are 

adopting in this course, the ideal way to proceed will be to characterize what area is through 

axioms and see that from these axioms the areas of all the commonly known figures are indeed 



what the formulas that you are familiar with say they are. So, what we will first do is before 

we get to the Riemann integral, let us talk a bit about area ok, an axiomatic characterization. 

In an ideal world given any subset 𝑆 ⊂ 𝑅2, we want to assign an area to it. So, in an ideal world 

given any subset of 𝑅2, you should be able to figure out what the area is, but things are never 

so ideal in mathematics. What happens is for deep set theoretic reasons this is not possible. 

What I mean by this is not possible is of course, given any set 𝑆, I can always assign its area to 

be 0 and be done with it and go home. What I mean is you cannot assign a reasonable notion 

of area to all subsets of 𝑅2 ok. So, this will be explored in a course on measure theory. It is 

actually a graduate topic, it is possible to do it at the undergraduate level, but it is a bit difficult, 

but nevertheless it is not within the scope of this course to see why this is not possible. 

So, what we can do is, to a subset 𝑀 ⊂ 𝒫(𝑅2), we can indeed we can indeed assign a reasonable 

notion of area. This 𝑀 is called the collection of measurable subsets, ok. 
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So, you have a function 𝑎 from 𝑀 to 𝑅+ that satisfies the following properties, the following 

properties. Number 1 is actually built into the definition non negativity. So, to be 100 percent 

precise I must write𝑅+ ∪ {0}. Non negativity: 𝑎(𝑆) ≥ 0, for all 𝑆 coming from this collection 

of measurable subsets of 𝑅2. 



Number 2, additivity property: additivity. This just says that if 𝑆, 𝑇 ∈ 𝑀, then 𝑆 ∨ 𝑇 ∈ 𝑀 

and 𝑆 ∧ 𝑇 ∈ 𝑀. furthermore 𝑎(𝑆 ∨ 𝑇) = 𝑎(𝑆) + 𝑎(𝑇)– 𝑎(𝑆 ∧ 𝑇). I hope you recall that this 

axiom is crucially used way back in ninth or tenth standard when you are figuring out the areas 

of common figures like quadrilaterals and so on. 

You would have definitely used this axiom without actually thinking about it deeply. So, this 

is a property that you would definitely want areas to have. If you have two sets for which area 

makes sense, then area makes sense for the union and the area of the union is nothing but the 

sum of the areas minus the sum of the common part. The third axiom is equally very very 

intuitive.  
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The difference property: this just says that if 𝑆, 𝑇  ∈ 𝑀 with 𝑆 ⊂ 𝑇 then so is 𝑇/ 𝑆 with 

𝑎(𝑇/𝑆) = 𝑎(𝑇) − 𝑎(𝑆), again a perfectly natural axiom. If you have two figures for which 

area makes sense and one figure is fully contained in the other then it makes sense to just excise 

that figure away from the larger figure and be left with the figure whose area is 𝑎(𝑇) − 𝑎(𝑆). 

Again this is a perfectly reasonable perfectly intuitive axiom that you would definitely have, 

area to have. 

Now, number 4 congruence axiom. Suppose 𝑆, 𝑇 ∈ 𝑀 such that 𝑆 is congruent to 𝑇. Now, 

what is 𝑆 is congruent to 𝑇 actually mean? Well, it means the following. I can take 𝑆, move it 

around, rotate it or reflect it about a line and somehow make 𝑆 coincide perfectly with the set 



𝑇; that means, I can take 𝑆 and somehow put it on top of 𝑇 and I cannot do arbitrary stuff all I 

am allowed to do is move 𝑆, rotate 𝑆 and reflect 𝑆 on some line in 𝑅2 ok. 

Such a thing is called an isometry if you know linear algebra such a thing is called an isometry 

called an isometry ok. These are precisely the mappings from 𝑅2 to 𝑅2 that preserve lengths 

ok. So, congruence axiom just says that if two figures can be made to overlap each other by 

moving it around by applying what is known as a rigid motion then 𝑆 and 𝑇 must have the 

same area. 

So, congruent figures have the same area, again intuitively perfectly obvious. And the fifth one 

so far the first 4 axioms are perfectly satisfied by the function a from power set of 𝑅2 to 𝑅 

given by 𝑎(𝑆) = 0, for all subsets right. So, this will give a completely nonsensical theory of 

area where every set has area 0. So, recall the remarks I made about area of rectangle. Well, 

you have to start somewhere. All theories must begin somewhere you cannot get something 

out of nothing. So, every rectangle 𝑅  ∈ 𝑀. 

Furthermore, area of this rectangle is length into breadth is length into breadth. So, this is sort 

of the starting point in some sense of this notion of area. You already know what the area of 

rectangles are. 
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Now, notice that just with these axioms you can assign areas to figures like this, a bunch of 

adjacent rectangles that is going to be just the sum of these areas, ok.  



So, you can find out areas of more complicated figures by using the first 5 axioms, but to really 

get the full force and have a notion of area that can deal with many many complicated figures, 

I need to give you an example of a complicated figure and it will turn out to be not so 

complicated at all its just a circle. 

Now, if you ponder for a few hours in fact, you will be able to realize that there is absolutely 

no way just by using these first 5 axioms, we can conclude that this set this circle, when I mean 

circle I mean with the interior with the interior which is contained in 𝑅2 somewhere. 

There is no way to conclude that first of all this thing has a well defined area second of all that 

the area of that is π𝑟2 neither of that will be possible just from the 5 axioms ok. However, we 

already know there is one way to find out an approximation of the area of this circle that is you 

just inscribe a polygon in it. 

You just inscribe a polygon. This might be familiar to you from your high school studies or 

you can circumscribe a polygon, I am not even going to draw and ruin what is already  quite a 

ugly figure. So, you can inscribe polygons and you can circumscribe polygons also and it will 

be easy to see that for these polygons just from the fact that rectangles have areas and unions, 

intersections all those have areas, you can show that polygons will have well defined areas. 

You can approximate this circle to as good a degree as you desire by polygons that are inscribed 

inside the circle as well as polygons that are circumscribed in the circle. And these 

approximations by taking some sort of limit you will be able to conclude what the area of the 

circle is. Now, we want to incorporate this idea of exhaustion from inside and outside as an 

axiom. 
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And that is finally, the exhaustion property. Without this it will be impossible to assign areas 

to figures like ellipses and circles and so on. Exhaustion property ok; we define we define a 

step region as a union of adjacent rectangles ok. This is not just union of several adjacent 

rectangles that is what a step region is because it looks like a staircase ok. 

So, let 𝑆 and 𝑇 be step regions. from the previous axioms both 𝑆 and 𝑇 will be measurable and 

you can assign areas to 𝑆 and 𝑇. Suppose, 𝑄 subset of 𝑅2 is such that is such that 𝑆 ⊂ 𝑄 ⊂ 𝑇 

ok.  

So, you can squeeze 𝑄 between the subsets. If there is a unique real number 𝑐 >  0 such that 

𝑎(𝑆) ≤ 𝑐 ≤ 𝑎(𝑇) for all choices of 𝑆, 𝑇 such that 𝑆 and 𝑇 are step regions, 𝑆 and 𝑇 are step 

regions with 𝑆 ⊂ 𝑄 ⊂ 𝑇, then  c is the area of 𝑄, ok. 

So, this sort of precisely says that this exhaustion procedure that we used to determine the area 

of the circle; there we use polygons here we are allowing only step regions for our purposes 

this will actually be more than enough. Just by step regions you can show that this polygonal 

approximation is also valid. You will be able to compute the area of many many figures by 

approximating from the inside and the outside by the step regions. 

So, this exhaustion property makes this precise ok. So, now, I have written 6 properties that we 

would like areas to have ok. So, I have already told you that it is impossible to find a function 

a from 𝑅2 not 𝑅2 from power set of 𝑅2 to 𝑅, you cannot find a function that satisfies all these 



6 axioms that is for deep set theoretic reasons which you will definitely visit in a course on 

measure theory. 
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On the other hand; on the other hand, that 𝑎 exists  for a good collection 𝑀 for a good collection 

𝑀. By good collection I just mean that any reasonable set that you are likely to encounter in 

any physical application of engineering or physics or chemistry or whatever. 

There is a good collection 𝑀 for which such a function exists. So, there is a reasonably big 

collection for which you can find an area function. 
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Such a construction can be found in the link below. Rather it is just a reference it is not really 

a link. So, anyway there is a textbook you can go through it how this is constructed in quite 

detail. 

Now, this is about general area. There is a function that for most reasonable subsets of 𝑅2 you 

can assign an area. The next question is there is a function area is very different from? I give 

you this figure tell me what its area is. Just knowing that there is such a function is of no 

practical use, unless there is some way to compute right. 

So, how do you compute areas? Well, integration is a tool in fact, a powerful tool to compute 

areas of many figures. So, in the coming modules, we will go through the construction of the 

Riemann integral in quite detail. We will do it in quite detail. 

The question also arises that this integration is supposed to be reverse of differentiation. In fact, 

when you learn integration in school, at least when I learnt integration in school I was not 

defined the Riemann integral at first. I was taught that 
𝑑

𝑑𝑥
sin 𝑥 = cos 𝑥. Therefore, integral of 

cos 𝑥 is sin 𝑥 + 𝑐; otherwise you will lose -1 or some such stupidity. 

But, this is the way I was taught that integration is the reverse of differentiation, but that 

completely hides the motivation behind integration. The motivation behind integration was to 

find areas. The motivation behind differentiation was to find slopes of the tangent at a particular 

point.  



It turns out that integration and differentiation are sort of reverse of each other and that is called 

the fundamental theorem of calculus. It is called the fundamental theorem of calculus simply 

because it is the most important theorem from calculus except maybe the mean value theorem. 

Now, since we are taking the more conceptually correct approach of first talking of Riemann 

integrals as areas, the question might arise what is all this have anything to do this notion of 

area and Riemann integral, why would you even suspect that it is in fact, related to 

differentiation in some way. Well, it is because of the following theorem. 
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Theorem; this is the axiomatic characterization of the Riemann integral of the Riemann 

integral. What does it say? Now, the Riemann integral is not very useful in computing the area 

of some arbitrary curve or arbitrary region in 𝑅2, it is completely useless. 

It is more useful to compute areas of figures that can be broken down into subfigures each of 

which is some graph ok, each of which is actually the region under a graph. So, this Riemann 

integral is used to find out the area under the graph of a function and it is a peculiar type of 

area, it is not exactly the same area as what we have been talking about up until now. 

It is sort of a signed area which means, if you take this figure if you take this figure this area 

will not be twice this area, it will the total area will not be twice this area rather it will be 0 

because this figure underneath that is supposed to be negative.  



So, why we are considering areas to be negative when you come to Riemann integrals will 

become very clear, it makes the theory lot simpler and anyway you can make it compute the 

actual areas by doing simple things ok. So, this Riemann integral is supposed to measure the 

area under the graph of a function. So, this is our setup. 
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Let 𝑎, 𝑏 ∈ 𝑅, 𝑎 <  𝑏, ok. Suppose, for each continuous function 𝑓: [𝑎, 𝑏] → 𝑅 we can assign a 

number denoted 𝐼𝑎
𝑏(𝑓). This is just going to stand for integral I from 𝑎 I integral of 𝑓 from 𝑎 

to 𝑏 ok, but I am going to denote it by 𝐼𝑎
𝑏(𝑓). Note, what this hypothesis is so far saying is that 

given any 𝑎, 𝑏 ∈ 𝑅 and each continuous function you can do this. 

In particular if you take some other 𝑐, 𝑑 and 𝑐 <  𝑑 and some other function 𝑔: [𝑐, 𝑑] → 𝑅, you 

can talk about 𝐼𝑐
𝑑(𝑔) also. So, whatever closed interval you give, whatever continuous function 

on that closed interval you take there is a way to assign this number which we have denoted 

𝐼𝑎
𝑏(𝑓) ok. So, that is the preliminary remarks about the setup. This 𝐼𝑎

𝑏 satisfying denoted 𝐼𝑎
𝑏 

satisfying, so, this is going to be an axiomatic characterization. 
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So, I will have to characterize right, I will have to tell you what it satisfies. The first property 

is that if 𝑚, 𝑀 are two numbers such that 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀, for all 𝑥 ∈ [𝑎, 𝑏] then 𝑚(𝑏 − 𝑎) ≤

𝐼𝑎
𝑏(𝑓) ≤ 𝑀(𝑏 − 𝑎). 2: If 𝑐 ∈ [𝑎, 𝑏] then 𝐼𝑎

𝑏(𝑓)  =  𝐼𝑎
𝑐(𝑓)+ 𝐼𝑐

𝑏(𝑓)  ok, excellent. 

So, these are the two things that 𝐼𝑎
𝑏 satisfies. I repeat again, the way it is written it might think 

as it might look as if 𝑎 and 𝑏 are fixed, they are not. Given any two numbers 𝑎, 𝑏 and any 

continuous function 𝑓: [𝑎, 𝑏] → 𝑅, these two properties must hold. So, this is sort of an 

hypothesis on not just continuous functions defined on this given interval [𝑎, 𝑏] to 𝑅, but 

continuous functions defined on any closed interval in 𝑅 ok. 

So, please do not make the mistake of thinking that this function is defined only for this 

particular pair. If that were so, this will not even make sense. These two quantities will not 

even make sense ok. 
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So, before I write down the conclusion, let me tell you what these two axioms are trying to say. 

This 𝐼𝑎
𝑏(𝑓) is supposed to be area under the graph. This is supposed to be area under the graph 

under the graph of 𝑓 ok. What this is saying is the following. 

Suppose you have the 𝑥 and 𝑦 axis and just for concreteness and not confusing you, let us just 

take a completely positive function and a nice looking one in that. Then what you are doing is 

you are choosing these numbers small 𝑚 and capital 𝑀 such that small 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀, for all 

𝑥 ∈ [𝑎, 𝑏]. So, small m could be somewhere like here and capital M is somewhere like here ok. 

So, let us draw these figures from a to b ok. 

So, this is 𝑎 and this is 𝑏. So, small 𝑚 is here. So, consider this rectangle and consider this 

larger rectangle ok. Now, look at this area, look at this area. Now, clearly this smaller rectangle 

which I call 1 is fully contained in the region under the graph and this region 2 fully contains 

the region under the graph. Therefore, if you look carefully at the axioms that characterize area 

this is nothing this is just this is just utterly obvious. This is just utterly obvious. 

If this 𝐼𝑎
𝑏(𝑓) indeed is measuring the area under the graph this should be utterly obvious ok. 

So, now, let us look at the second property that is also going to say the same thing. That is just 

saying if you break up this area into two pieces into two pieces let us say 𝐿 and 𝑅 then the area 

under the graph is nothing but the area  𝐿 +  𝑅. Again this also follows directly from the various 

axioms of area that we have written ok. 



So, if you notice these two axioms for the Riemann integral are just coming from some of the 

properties that characterize area ok. This is not an entire characterization of area that we are 

using here just these two simple properties. 
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Then the conclusion. So, let me move back to red because we are at the conclusion stage. Then 

the conclusion of this theorem is follows is as follows. Look at the function 𝑥 ↦ Ia
x(𝑓), 𝑥 ∈

[𝑎, 𝑏]. So, what you are doing is you are taking the given point 𝑥 which is there in the interval 

[𝑎, 𝑏] and mapping it to the area under the graph of 𝑓, but only till 𝑥 not all the way till 𝑏. 

Then this function is differentiable in a, b and its derivative is as you can guess nothing but f 

of x nothing but f of x. So, this big theorem called the axiomatic characterization of the 

Riemann integral just says that if you take the most primitive properties that you would expect 

a function that takes a given function to the area under the graph of the function. 

If you take the very most basic properties that you would expect that is properties 1 and 2 that 

I have written here, it turns out that something like the fundamental theorem of calculus is true. 

This is just if you look back at your NCERT textbooks, you will notice that this is just the 

disguise form of fundament, it is not even that disguise, it is a poorly disgraced form of the 

fundamental theorem of calculus. So, what this axiomatic characterization is saying is that areas 

and Riemann integral sorry; areas and differentiation are very tightly knit together. 



If you take the very basic properties of area under the graph the fundamental theorem of 

calculus has to drop out as a simple consequence. Now, as it is this module is gone for quite 

some length, I will leave it you to process whatever I have told. I have told a lot, please process 

this. In the next module we will see a proof of this characterization and then onwards to the 

construction of the Riemann integral. 

Note, just because you say that if there is a function that satisfies something then it is got to be 

it has to satisfy fundamental theorem of calculus, does not tell you that there is such a 

assignment. We have not told you how 𝐼𝑎
𝑏(𝑓) is to be computed that will be done by a precise 

construction which will be done in a later module. 

This is a course on real analysis and you have just watched the module on the axiomatic 

characterization of the area and the Riemann integral. 


