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In this module, we are going to study the very important Taylor’s Theorem. Recall our 

definition of derivatives interpreted in terms of linear approximations. Suppose, 𝑓 is 

differentiable at the point 𝑥,  then 𝑓(𝑥 + ℎ) = 𝑓(𝑥) + 𝑓’(𝑥)ℎ + 𝐸(ℎ) and this error term has 

the property that lim
ℎ→0

𝐸(ℎ)

ℎ
= 0 
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So, this approximation is a reasonable one, a reasonably good approximation. The question 

naturally arises can we make a better approximation if we know not only that 𝑓 is differentiable 

at the point 𝑥, but 𝑓 is k-times differentiable at the point 𝑥. So, let us see what happens. 

Suppose 𝑓 is 𝑘-times differentiable at 𝑥. Now, one would like to have an approximation of 

𝑓(𝑥 + ℎ) in terms of the data that you have about 𝑓 at the point 𝑥. So, can we approximate 

𝑓(𝑥 + ℎ) in terms of 𝑓 at 𝑥. 

So, we can do an approximation because 𝑘-times differentiable automatically means, it is once 

differentiable and we have this approximation. Of course, the goal is to do much better than 

this by using the higher derivatives.  

Now, what will be our guess? We have approximated 𝑓(𝑥 + ℎ) using something that is linear. 

So, the natural thing to do would be to try to approximate 𝑓(𝑥 + ℎ) using a polynomial. Let us 

try to do that. 
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Can we approximate 𝑓(𝑥 + ℎ) using a polynomial? Now, what polynomial would you choose? 

Note that the polynomial that we have considered before is 𝑓(𝑥) + 𝑓’(𝑥)ℎ; this is a linear 

polynomial, a polynomial of degree 1.  

Not only is it a polynomial of degree 1, it is a special polynomial. So, note this is treated as a 

polynomial in ℎ of course, it is not a polynomial in 𝑥, 𝑥 has been fixed. 

Note that this polynomial as a function of ℎ agrees with 𝑓(𝑥 + ℎ) treated again as a function 

of ℎ at ℎ =0. Well yes, when you substitute ℎ = 0, this term vanishes you get 𝑓(𝑥) = 𝑓(𝑥).  

But 𝑝’(ℎ) = 𝑓’(𝑥), right because when you differentiate this with respect to ℎ, this 𝑓(𝑥) term 

vanishes and derivative is just 𝑓’(𝑥). So, this function 𝑝(ℎ) agrees with 𝑓(𝑥) up to order 1 at 

𝑥. 
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Or rather to write it more precisely agrees with 𝑓(𝑥 + ℎ) up to order 1 at ℎ =  0. 
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Now, we want to produce a polynomial that agrees with 𝑓 at the point ℎ =  0, not just till order 

1, but till order 𝑘 or 𝑘 + 1 or what not. Here, we are assuming 𝑓 is k times differentiable so, 

up till order k ok.  

So, how would you do that? What we want is a polynomial 𝑝(ℎ) with the property that 𝑝(0) =

𝑓(𝑥), 𝑝’(0) = 𝑓’(𝑥), … 𝑝(𝑘)(0) = 𝑓(𝑘)(𝑥). 



  

Now, if you think about this for a moment, you will soon understand that it might be a good 

idea to use these special monomials of the form ℎ𝑟, 0 ≤ 𝑟 ≤ 𝑘, right. Look at these special 

monomials ℎ𝑟, look at the derivative. The derivative of this is 𝑟ℎ𝑟−1.  

So, this ℎ𝑟, have the special feature that rth derivative is 𝑟! and all other derivatives are 0; all 

other derivatives are 0. Of course, I am treating it as a function of ℎ and differentiating with 

respect to ℎ.  
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So, if you consider 
ℎ𝑟

𝑟!
𝑓(𝑟)(𝑥), if you look at this; if you look at this term, differentiate 𝑟 times; 

differentiate 𝑟 times, we get 𝑓(𝑟)(𝑥), well right because the rth derivative of ℎ𝑟 would be 

nothing but 𝑟! factorial which will get cancelled with the 𝑟! factorial in the denominator and 

you are left with 𝑓(𝑟)(𝑥). 

So, this prompts us to consider this polynomial 𝑝(ℎ): = 𝑓(𝑥) + 𝑓’(𝑥)ℎ +
𝑓(2)(𝑥)

2!
ℎ2 + ⋯ +

𝑓(𝑘)(𝑥)

𝑘!
ℎ𝑘 and this is called the kth order Taylor polynomial of 𝑓 at 𝑥 ok. 
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Now, is 𝑝(ℎ) a good approximation of 𝑓(𝑥 + ℎ)? The following theorem answers this question. 
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Theorem: Let 𝑓: (𝑎, 𝑏) ⟶ 𝑅  be k-times differentiable in (𝑎, 𝑏) and [𝑥, 𝑥 +  ℎ] closed interval 

let it be a subset of [𝑎, 𝑏], then  

(1) 𝑝 approximates 𝑓 to order 𝑘 at 𝑥. What does this mean? This means if you define 𝑅(ℎ) 

=𝑓(𝑥 + ℎ) − 𝑝(ℎ),  then lim
ℎ→0

𝑅(ℎ)

ℎ𝑘
= 0, ok. 



  

So, this just says that the remainder term 𝑓(𝑥 + ℎ) − 𝑝(ℎ) gets really small as ℎ goes to 0 and 

this is quantified by saying it approximates to order 𝑘, 
𝑅(ℎ)

ℎ𝑘  itself goes to 0, not just 
𝑅(ℎ)

ℎ
 as what 

happened in the definition of the derivative.  

(2), If 𝑄 is another polynomial of degree less than or equal to 𝑘 such that 𝑄 approximates 𝑓 to 

order 𝑘 at 𝑥, then 𝑄 = 𝑝 right; that means, there is only a unique polynomial which has the 

feature that 𝑓, that polynomial approximates 𝑓 till order 𝑘. 
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(3), If we assume 𝑓 is 𝑘 + 1 times differentiable in (𝑎, 𝑏), then 𝑅(ℎ) you can write it as 

𝑓(𝑘+1)(θ)

(𝑘+1)!
ℎ𝑘+1. You can write an explicit expression for 𝑅(ℎ). Let me immediately make a 

remark. This is known as Lagrange form of remainder and it is very useful in the following 

sense. 

Suppose we know that |𝑓(𝑘+1)(θ)| ≤ 𝑀 for all θ ∈ (𝑎, 𝑏). for instance, we know this for sine 

and cosine. We know that the derivative of sine is cosine, and the derivative of cosine is - sine 

and these just get repeated, the higher order derivative just get repeated.  

So, we know that if you are considering the sine function, no matter what derivative you take, 

it is always going to be modulus less than or equal to 1 right. So, in many functions we do 

know such data about any derivative. 



  

So, we have this  |𝑓(𝑘+1)(θ)| ≤ 𝑀 when θ comes from (𝑎, 𝑏). So, |𝑅(ℎ)| ≤
𝑀

(𝑘+1)!
ℎ𝑘+1. Now, 

observe that in the Lagrange form of the remainder, there is a quantity θ that is unknown to us.  

This θ will in general change when you perturb the point ℎ. So, even if you have fixed 𝑥, 

depending on the ℎ, this θ will change. So, this remainder form, this remainder term even 

though I have written 𝑅(ℎ), this expression on the right there is an implicit dependence of ℎ 

even in θ. 
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So, a better way to write it is to write this as θ(ℎ) and this θ(ℎ) function is sort of unknown to 

us, how it behaves, whereas, in this expression that additional dependence on ℎ has 

disappeared, the dependence on ℎ is solely coming from this; solely coming from this. A 

function that we understand really well |ℎ𝑘+1| is a very simple function ok. 

So, the additional dependence on this function θ which is in general unknown is gone. So, this 

Lagrange form of the remainder when you know you have some estimate on the derivatives is 

very very useful and this will be illustrated throughout in the coming modules when we talk 

about the elementary function sine, cosine and so on defined in terms of power series ok. 
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On to the proof. Well, let us first start with the first part. We already know that 𝑅(ℎ) and its 

first 𝑘 derivatives are 0 at ℎ =  0 and 𝑅 is certainly 𝑅 is 𝑘 times differentiable in [𝑎, 𝑏] in the 

closed interval [𝑎, 𝑏]. 
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Not in the closed interval [𝑎, 𝑏] sorry in the closed interval [𝑥, 𝑥 + ℎ]. So, we can apply mean 

value theorem to 𝑅 in not  [𝑥, 𝑥 + ℎ], in [0, ℎ]. We can apply mean value theorem to 𝑅 in [0, ℎ]. 

What do we get? Well, 𝑅(ℎ)– 𝑅(0) = 𝑅’(θ1)ℎ. 



  

for convenience, I am assuming ℎ >  0 because I am writing [0, ℎ]. Whatever I am about to 

write if ℎ <  0, you just have to apply it to [−ℎ, 0]. You will just have to apply an analogous 

argument a [−ℎ, 0]; for convenience I am assuming ℎ >  0, ok. So, 𝑅(ℎ)– 𝑅(0) = 𝑅’(θ1)ℎ by 

mean value theorem, where θ1 ∈ [0, ℎ] or rather the open interval (0, ℎ); open interval (0, ℎ). 

Now, we can of course, apply the mean value theorem again to the function 𝑅(θ1) − 0. Look 

at 𝑅’(θ1) − 0. Well, this is just 𝑅’(0), right. So, you can apply the mean value theorem again 

now to the function 𝑅’ to get 𝑅’’(θ2)ℎ where θ2 ∈ [0, θ1] right. So, this is just applying the 

mean value theorem again. 

Now, note we know that the function 𝑅 is 𝑘 times differentiable in the closed interval [0, ℎ], 

but we cannot apply the mean value theorem k-times on this closed interval simply because we 

do not know whether kth derivative of 𝑅 is continuous in closed interval [0, ℎ] that is unknown 

to us.  

Because we are just assuming kth order differentiability of the function 𝑓 in the open interval 

(𝑎, 𝑏). So, we cannot apply the mean value theorem k times, but we can apply it (k-1)times ok. 
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So, applying mean value theorem (k-1)times, we get 𝑅(ℎ) = 𝑅(𝑘−1)(θ𝑘−1)θ𝑘−2θ𝑘−3 … θ1ℎ, 

where we have 0 < θ𝑘−1 < θ𝑘−2 < θ𝑘−3 … < θ1 < ℎ ok. So, this is by repeatedly applying 

the mean value theorem. 



  

Now, the quantity we are interested in is 
𝑅(ℎ)

ℎ𝑘
 and this just turns out to be 𝑅(ℎ) =

𝑅(𝑘−1)(θ𝑘−1)θ𝑘−2θ𝑘−3 … θ1 
ℎ

ℎ𝑘 Now, how is this going to be, how are we going to simplify 

this?  

Well, observe that this θ𝑘−1, θ𝑘−2, θ𝑘−3, … , θ1 are all less than ℎ. So, this whole thing I can 

write it as 𝑅(𝑘−1)(θ𝑘−1) and cancel off ℎ and this and cancel off all of these also. So, what I 

am doing is in the numerator, have a quantity which is less than the denominator.  

So, I am going to replace these essentially by ℎ𝑘−2, right and cancel it off. So, this is strictly 

less than 
𝑅𝑘−1(θ𝑘−1)

ℎ
. Now, what I am going to do is I am going to be clever.  

The denominator I am going to replace by a smaller quantity and write this is less than 

𝑅𝑘−1(θ𝑘−1)

θ𝑘−1
 which I can do. Now, as h goes to 0, well θ𝑘−1 also goes to 0. We do not know how 

it goes to 0, but it certainly is going to go to 0, right.  
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That means, lim
ℎ→0

𝑅𝑘−1(θ𝑘−1)

θ𝑘−1
 = 0  because this is just 𝑅𝑘(0), right. So, what happens is the 

quotient goes to 𝑅𝑘 + 0 which is 0 we know that because that is how the function 𝑅 was defined, 

we had defined the function 𝑝 to agree with function 𝑓 till order 𝑘 at the point ℎ =  0 ok.  



  

So, this concludes the proof of part 1 ok. Part 2 is easy and left to you. Now, let us go to part 

3. In this part, let me recall we are assuming that 𝑓 is k+1 times differentiable at or in (a, b) and 

we want to get an explicit form for 𝑅(ℎ); 𝑅(ℎ) explicit form we want ok. 
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So, now, we already know that 𝑅(ℎ) = 𝑓(𝑥 + ℎ) − 𝑝(ℎ). Now, what I am going to do is I am 

going to treat 𝑅 as a function of 𝑢 for a moment because at the end of the day, even though I 

write 𝑅(ℎ) sort of  ℎ is fixed right so, I am going to treat it as 𝑓(𝑥 + 𝑢)– 𝑝(𝑢). 

Now, what I plan to do is look at 𝑓(𝑥 + 𝑢)– 𝑝(𝑢), I want to so, I want to apply Rolle’s theorem 

to 𝑅(𝑢) in [0, ℎ]. I want to apply Rolle’s theorem to 𝑅(𝑢) in [0, ℎ], but can I apply Rolle’s 

theorem to 𝑅(𝑢) in [0, ℎ]? No. So, even though R(0) = 0, we do not know whether R(h) = 0. Is 

this 0? Well, that is not clear; that is not clear. 

So, what we do is we consider this new function 𝑔(𝑢) = 𝑓(𝑥 + 𝑢) − 𝑝(𝑢)  something to make 

𝑅, to make the value at ℎ,  0, but if I make the value at h, 0, I will be modifying these first few 

terms at the point 𝑢 =  0 also. If I want to make this 𝑔(𝑢) = 0 at 𝑢 =  ℎ, I do not want to 

touch the value of 𝑔 at the point 0. 

So, what I do is I subtract a quantity λ; λ is going to be a constant which I am going to determine 

times 𝑢𝑘+1. Why did I do 𝑢𝑘+1 because of the convenient property that at 𝑢 =  0, the first 𝑘 

derivatives vanish, the first k derivatives vanish at 𝑢 =  0.  



  

So, this modification to the function 𝑅 that I am doing by subtracting λ𝑢𝑘+1 does not affect the 

behaviour of the first k derivatives at the origin that is the logic behind subtracting λ𝑢𝑘+1, ok. 
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Now, how do we determine what this λ is well simple. Differentiate (𝑘 + 1) times at 𝑥 = ℎ; at 

𝑥 = ℎ, rather you do not have to do all that sorry about that, you do not have to do that at least 

now. 
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You just want to determine what λ is. Well, we want 𝑓(𝑥 + ℎ) − 𝑝(ℎ) − λℎ𝑘+1 = 0 right. So, 

that just gives λ is going to be 
𝑓(𝑥+ℎ)−𝑝(ℎ)

ℎ𝑘+1 . Now, it really does not matter what exactly λ is I 

am just telling you that there is a λ that will make Rolle’s theorem applicable to the function 

𝑔. 

Now, observe the way we have done 𝑔(0) = 𝑔’(0) = ⋯ = 𝑔𝑘(0) = 0, we know this and we 

also know that 𝑔(ℎ) = 0 that is all we know ok.  

Now, applying Rolle’s theorem, we get a point θ1. Again, I am going to assume that ℎ >  0 

for convenience analogous arguments will hold when ℎ <  0, there is a θ1 ∈ (0, ℎ),  in open 

interval (0, ℎ) such that 𝑔’(θ1) = 0. 

Similarly, applying it again, applying Rolle’s theorem again to [0,  θ1], we will be able to 

conclude that 𝑔’’(θ2) = 0, where θ2 comes from [0,  θ1]. When you apply this repeatedly, what 

will happen is we will get all the way till we will get a point θ𝑘 such that this will be somewhere 

in [0, ℎ] such that 𝑔𝑘(θ𝑘) = 0, right. 
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But we are now assuming that the function 𝑓 is 𝑘 + 1 times differentiable. So, we can apply 

Rolle’s theorem once more. We can apply Rolle’s theorem once more to get a point θ𝑘+1 ∈ 

[0, θ𝑘] such that 𝑔(𝑘+1)(θ𝑘+1) = 0, ok. 



  

Now, this is what I want. Well, how is this useful? So, we have 𝑓(𝑥 + ℎ) − 𝑝(ℎ) sorry we do 

not have that sorry about that we have 𝑔(𝑢); 𝑔(𝑢) = 𝑓(𝑥 + 𝑢)– 𝑝(𝑢) − λ𝑢𝑘+1. 

What will be the (𝑘 + 1)th derivative; what will be the (𝑘 + 1)th derivative of this at θ𝑘+1, 

well that is just going to be 𝑓(𝑘+1)(𝑥 + θ𝑘+1). This polynomial is a of degree 𝑘, so, that 

vanishes and this will just give us −(𝑘 + 1)! λ. In other words, λ =
𝑓(𝑘+1)(𝑥+θ𝑘+1)

(𝑘+1)!
  this is what 

λ is going to be. 

(Refer Slide Time: 29:48) 

 

But wait a second, how was λ chosen? λ was chosen so that 𝑓(𝑥 + ℎ) − 𝑝(ℎ) − λℎ𝑘+1 = 0, 

right. In other words, λℎ𝑘+1 is what we have been calling 𝑅(ℎ) all along. It was just a different 

name that we have given right.  

But λ =
𝑓(𝑘+1)(𝑥+θ𝑘+1)

(𝑘+1)!
  right that is what we have concluded by repeated application of Rolle’s 

theorem the; that means, λℎ𝑘+1 is 𝑅(ℎ) and if you look carefully, this is what we wanted, this 

is the Lagrange form. 

So, I hope the proof is clear and what is going on and the logic behind the proof. So, it is easy 

to understand this proof, it is not that hard, but the logic behind the proof is what I want you to 

appreciate. So, please go through this proof once more and try to make sure that you digest it 

completely.  



  

We will anyway revisit Taylor’s theorem once again after we study integration and give a 

different form of the remainder term. This is a course on real analysis, and you have just 

watched the module on Taylor’s theorem with Lagrange form of the remainder. 


