Real Analysis - I Dr. Jaikrishnan J Department of Mathematics Indian Institute of Technology, Palakkad

Lecture – 23.1 Darboux s Theorem

(Refer Slide Time: 00:14)

	Nar boun	's thee	orom.		The same of the sa
The oran: Ass un	l et	f: (q, f'(a) <	6) -> 1h & C F	be (b).	die Fermin Thon
	For S	some c	c 5a.63.	we	have
TVP			derivativ	es.	

Now, I am going to prove one of my favourite theorems on the derivative. The theorem is as follows. Theorem, let $f:[a,b] \to R$ closed interval be differentiable including the end points, of course, differentiable. Assume that $f'(a) < \alpha < f'(b)$. Then for some c in the closed interval a, b, we have $f'(c) = \alpha$; in other words, intermediate value property holds for derivatives ok.

(Refer Slide Time: 01:15)

Corollary	: P'W: [9	6) -71h larnot have
	a jump di	is continuity.
1760 G	Conside ga	0 = f(x) - ax.
	gl prisss and	
	g'(a) co	, g'(b) > 0
	Though to show	that 0 Far Some CE [q
	a'(c)	-0 For Some CES

Before the proof, let me state a corollary. Corollary, f'(x): $[a,b] \to R$ cannot have a jump discontinuity. Now, let us prove the theorem the proof of the corollary is so obvious that I am not even going to justify giving a proof. Let us consider this for a moment. We want to show that all intermediate values are taken.

So, what I do is I simplify the situation. Consider, $g(x) = f(x) - \alpha x$ ok. Now, g' exists and we clearly see that g'(a) < 0, and g'(b) > 0. This just follows because the derivative of αx is just α . So, enough to show that g'(c) = 0 for some $c \in [a, b]$.

(Refer Slide Time: 02:51)

sine $g(a) < 0$
(im g(ath) -g(a) <0
h-20 h
h> 0
for h close to and >0
g (ath) < g (a), g 15 "deresing"
hon 9.

Let us look at what g'(a) < 0 trying to say. Well since g'(a) < 0, that means, $\lim_{h \to 0} \frac{g(a+h)-g(a)}{h} < 0$. And note because a is the left endpoint of the interval, h > 0 here. In other words, for h close to 0 and greater than 0, we get g(a+h) < g(a), ok.

In other words, g is decreasing, I will put this in quotes near a. So, in a later module, once we prove the mean value theorem, we will show that this g is decreasing and the sign of the derivative being less than 0 are intimately related to each other.

(Refer Slide Time: 04:59)

(Simi laigy
	g(Cb) > 0 1/m $g(Cb+h) - g(b) > 0$
	h->0 h
	9 (b) - g(bh) 2 ° g(b) > g(b+h).
	ret conclusion is that g hust attain its minimum in (1, b)

Similarly, g'(b) > 0, so that means, $\lim_{h \to 0} \frac{g(b+h) - g(b)}{h} > 0$, right, but here h has to be negative; h is negative simply because we are at the right end point ok. So, this just this will just show that g(b) - g(b+h) > 0, in other words g(b) > g(b+h).

So, net conclusion is, net conclusion is that g must attain its minimum in [a, b]; g certainly attains its maximum and minimum in the closed interval [a, b]; it must attain its minimum in the open interval (a, b). Why is that?

Well, because we have found that near the point a there is a point a + h such that g(a + h) < g(a), and near the point b we have found a point such that g(b) > g(b + h). So, both put together says that neither g(a) nor g(b) can be the minimum of the function g. So, g must attain its minimum in the in (a, b).

(Refer Slide Time: 05:53)

h->0 h
h < 0
g (b)- g(bth) 2 °
3(b) > 3 (b+h).
ret conclusion 3 that
g host attain ItS minimum
in (1, b)
let (E(9,b) be the point of
minimm we will show g'(C)=0.
This conclud the proof.

So, let us $c \in (a, b)$ be the point of minimum be the point of minimum ok. Now, in the next module, we will show; we will show g'(c) = 0, ok, that we will see in the next module. So, this will conclude the proof..

This is a course on real analysis. And you have just watched the module on Darboux Theorem.