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Lecture —23.1

Darboux s Theorem
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Now, | am going to prove one of my favourite theorems on the derivative. The theorem is as
follows. Theorem, let f: [a, b] — R closed interval be differentiable including the end points,
of course, differentiable. Assume that f'(a) < a < f'(b). Then for some ¢ in the closed
interval a, b, we have f'(c) = «a; in other words, intermediate value property holds for

derivatives ok.
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Before the proof, let me state a corollary. Corollary, f'(x): [a, b] — R cannot have a jump
discontinuity. Now, let us prove the theorem the proof of the corollary is so obvious that I am

not even going to justify giving a proof. Let us consider this for a moment. We want to show

that all intermediate values are taken.

So, what | do is | simplify the situation. Consider, g(x) = f(x) — ax ok. Now, g’ exists and
we clearly see that g'(a) < 0, and g'(b) > 0. This just follows because the derivative of ax

is just a. So, enough to show that g’ (c) = 0 for some ¢ € [a, b].
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Let us look at what g'(a) <0 trying to say. Well since g'(a) <0, that means,

lim gla+h)—g(a)
h—0

other words, for h close to 0 and greater than 0, we get g(a + h) < g(a), ok.

< 0. And note because a is the left endpoint of the interval, h > 0 here. In

In other words, g is decreasing, | will put this in quotes near a. So, in a later module, once we
prove the mean value theorem, we will show that this g is decreasing and the sign of the

derivative being less than 0 are intimately related to each other.
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Similarly, g'(b)>0, so that means, }lm% > 0, right, but here h has to be negative; h

is negative simply because we are at the right end point ok. So, this just this will just show that
g(b) —g(b+ h) > 0, in other words g(b) > g(b + h).

So, net conclusion is, net conclusion is that g must attain its minimum in [a, b]; g certainly
attains its maximum and minimum in the closed interval [a, b]; it must attain its minimum in

the open interval (a, b). Why is that?

Well, because we have found that near the point a there is a point a + h such that g(a + h) <
g(a), and near the point b we have found a point such that g(b) > g(b + h). So, both put
together says that neither g(a) nor g(b) can be the minimum of the function g. So, g must

attain its minimum in the in (a, b).
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So, let us ¢ € (a, b) be the point of minimum be the point of minimum ok. Now, in the next
module, we will show; we will show g’'(c) =0, ok, that we will see in the next module. So,

this will conclude the proof..

This is a course on real analysis. And you have just watched the module on Darboux Theorem.



