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In this module, I shall prove some of the very Basic Properties of the Derivative. first, let us 

start with a very simple proposition; suppose 𝐼 ⊂ 𝑅 is an interval; 𝑓: 𝐼 → 𝑅 is a function and 

𝑐 ∈ 𝐼. Suppose, 𝑓 is differentiable at 𝑐. This just means as you can guess that the derivative at 

the point 𝑐 exists. Then, 𝑓 is continuous at 𝑐. The proof is fairly easy. Let us consider what the 

second interpretation of the derivative as a good linear approximation allows us to prove this 

quickly; let us see how it does that. We know that 𝑓(𝑥) = 𝑓(𝑐) + 𝑓′(𝑐)(𝑥 − 𝑐) +

𝐸(𝑥 − 𝑐)(𝑥 − 𝑐), ok. Now, take  lim
𝑥→𝑐

 on the RHS ok. This will vanish and so will this right. 
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Hence, lim
𝑥→𝑐

 𝑓(𝑥) = 𝑓(𝑐); we are done. So, we got the proof instantly; once we use the 

interpretation of the derivative as giving a good linear approximation. Many other properties 

will also follow quite easily from this; let us consider the various algebraic properties of the 

derivative. Algebraic properties of the derivative.  

This time 𝑓, 𝑔 are functions from 𝐼 to 𝑅, then suppose 𝑓′(𝑐), 𝑔′(𝑐) exists. Then, (𝑓 + 𝑔)′(𝑐) =

𝑓′(𝑐) + 𝑔′(𝑐); in fact, I can put ± also. This one I am not even going to bother proving this is 

so utterly easy. Second, (𝑓𝑔)′ (𝑐) =𝑓(𝑐)𝑔′(𝑐) + 𝑓′(𝑐)𝑔(𝑐), this is also called the Leibniz rule; 

let us prove this. 
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So, as is familiar; I will just rewrite 𝑓′(𝑐) = lim
ℎ→0

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
. Now, one trivial remark, but still 

nevertheless has to be made is that the point 𝑐 could be one of the end points of 𝐼.  

I am not specifying whether 𝐼 is an open interval or 𝐼 is a closed interval, I am making no such 

distinction; 𝐼 is just an interval and it can happen that the point 𝑐 is one of the end points of the 

interval, in which case when I write limit ℎ going to 0; it obviously means the corresponding 

right hand limit or left hand limit as the case might be. 

As this is not such an important point, I will not be extra scrupulous and simply write limit h 

going to 0 with the understanding that the choices of h is to ensure that the 𝑐 +  ℎ is there in 𝐼 

ok. Always the ℎ is chosen so that the 𝑐 +  ℎ is in 𝐼; this is implicit ok.  

Now, I have just rewritten the usual definition of derivative in terms of the variable ℎ; that this 

is equivalent to derivative is easy to see, equivalent to derivative is very easy to see. The usual 

definition involving 
𝑓(𝑥)−𝑓(𝑐)

𝑥−𝑐
, as limit 𝑥 going to 𝑐, this and this quotient will exactly be equal 

to that quotient in the limit ok. 
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So, now that we have rewritten like this; let us write what 𝑓𝑔 should be. So, 𝑓𝑔′(𝑐) has got to 

be the limit of some quotients. So, let me just write those quotients; it is got to be 
𝑓𝑔(𝑐+ℎ)−𝑓𝑔(𝑐)

ℎ
; 

I want to analyze this quotient.  

Well, of course we pull the standard trick that we are all familiar with, we write this as 

𝑓(𝑐 + ℎ)𝑔(𝑐 + ℎ). So, that this is understood; 
𝑓(𝑐+ℎ)𝑔(𝑐+ℎ)−𝑓(𝑐+ℎ)𝑔(𝑐)+𝑓(𝑐+ℎ)𝑔(𝑐)−𝑓(𝑐)𝑔(𝑐)

ℎ
. The 

standard +, − add something, subtract something; that gives you the answer ok. 
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Now, this will be equal to  
𝑓(𝑐+ℎ)(𝑔(𝑐+ℎ)−𝑔(𝑐))

ℎ
+

𝑔(𝑐)(𝑓(𝑐+ℎ)−𝑓(𝑐))

ℎ
; taking limits, limit ℎ going 

to 0, immediately; gives the result. Now, we come to the next property which is the quotient 

property.  

So, number 3; if 𝑔(𝑐) ≠ 0, in addition to assuming that 𝑔′(𝑐) exists; then (
1

𝑔
)′(𝑐) =

−1

𝑔2
(𝑐)𝑔′(𝑐) ok. No assumption on the derivative at the point 𝑐, other than that it exists, but we 

need to assume that 𝑔(𝑐) ≠ 0 ok. 
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Now, note that this 
1

𝑔
 is defined only in some neighborhood or some ball around 𝑐, intersection 

𝐼, intersection this interval I. This 
1

𝑔
 is not a globally defined function on the whole of 𝐼; it can 

happen that even though 𝑔(𝑐) ≠ 0, g could be 0 at some other point ok. So, let us prove this; 

first 
1

𝑔
 is indeed defined, I will just abbreviate this as saying near the point 𝑐 because 𝑔(𝑐) ≠ 0 

and 𝑔 is continuous, 𝑔 is continuous at 𝑐.  

Because of the ε − δ definition of continuity and the fact that 𝑔(𝑐) ≠ 0; we can find some 

small enough ball around 𝑐 such that the value of 𝑔 on that ball intersect I; will also be not 0; 

this just follows from continuity and the ε − δ definition. And 
1

𝑔
 is indeed going to be well 

defined there, but we cannot say far away from this point 𝑐, whether 
1

𝑔
 is going to be well 

defined. 
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Now, let us write down what the derivative of 
1

𝑔
 . The derivative of 

1

𝑔
 is got to be by writing the 

quotient. So, we need to compute 

1

𝑔
(𝑐+ℎ)−

1

𝑔
(𝑐)

ℎ
; we have to compute the quotient of this. Well, 

that is rather easy we just do LCM and this will give you 𝑔(𝑐 + ℎ)𝑔(𝑐).  

And in the numerator, we will get 𝑔(𝑐) − 𝑔(𝑐 + ℎ) and this ℎ which was originally there will 

go here. Now, when you take limit ℎ going to 0; you clearly get 𝑔′(𝑐) with a negative sign 

because there is the order has gotten mixed up. Now because of that, you get 𝑔′(𝑐) and the 

denominator just becomes 𝑔2(𝑐) which is what was required; which is what we needed ok. So, 

the derivative of 
1

𝑔
=

−1

𝑔2
𝑔′(𝑐).  
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So, exercise; formulate and prove a quotient rule for  
𝑓

𝑔
, ok. Again, this is all familiar from high 

school; in fact, even the proofs are more or less the same. Except now that all we have done is; 

we have the background definition of limit rigorously done.  

In school you did not have the background definition of limit rigorously done, but the proofs 

are exactly the same, the only difference is the certain properties of limits you took it for granted 

without really getting to the guts of the thing; we have already done that work. So, essentially 

what I am doing is a repeat of what you have done in school; so, I will be going a bit fast ok. 

Now, we come to the famous chain rule; theorem, chain rule. This often perplexes students 

because you would expect the derivative of 𝑔 ∘ 𝑓 ; not to be just such a simple product. Now, 

let us write down; let us write down a precise statement. Let 𝑓: 𝐼 ⟶ 𝑅 and 𝑔: 𝐽 ⟶ 𝑅  be 

functions.  

Assume, first that 𝑓(𝐼) ⊂ 𝐽; this is strictly not needed you can do a better more ugly, but more 

refined version of this. I am not going to do that, you think about how to replace this hypothesis 

with the more refined one, but it will look ugly; in the after I finish the proof. 𝑓 is differentiable 

at the point 𝑐 ∈ 𝐼, 𝑔 is differentiable at the point 𝑓(𝑐) in 𝐽. Then, (𝑔 ∘ 𝑓)′ (c)= 𝑔′(𝑓(𝑐))𝑓′(𝑐), 

let us prove this. 
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Proof, we will again use the linearization version of the definition of derivative. So, we already 

know that 𝑓(𝑐 + ℎ) = 𝑓(𝑐) + 𝑓′(𝑐)ℎ + 𝐸1(ℎ)ℎ, let me call this 𝐸1, if you do not mind. 

Similarly, 𝑔(𝑑 + 𝑘); let 𝑑 = 𝑓(𝑐). Then, 𝑔(𝑑 + 𝑘) = 𝑔(𝑑) + 𝑔′(𝑑)𝑘 + 𝐸2(𝑘)𝑘. 

Now, what you do is set 𝑘 = 𝑓(𝑐 + ℎ) − 𝑓(𝑐); fine. Now all this will make; so there are several 

underlying trivialities that as usual, I am pushing under the carpet for you to fetch. The thing 

is this 𝑓(𝑐 + ℎ) − 𝑓(𝑐), this value 𝑘 that you get that should ensure that 𝑔(𝑑 + 𝑘) is defined 

ok; that should ensure that 𝑔(𝑑 + 𝑘) is defined and indeed that will happen, if ℎ is really small.  

Because, then 𝑓(𝑐) will be very close to 𝑓(𝑐 + ℎ) or rather 𝑓(𝑐 + ℎ) will be very very close to 

𝑓(𝑐) and all these manipulations that I am about to do will make sense. So, let us write down 

what this gives us 𝑔(𝑓(𝑐 + ℎ)) because 𝑘 = 𝑓(𝑐 + ℎ) − 𝑓(𝑐) and 𝑑 = 𝑓(𝑐), we get 

𝑔(𝑓(𝑐 + ℎ)) = 𝑔(𝑓(𝑐)) + 𝑔′(𝑓(𝑐))(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) + 𝐸2(𝑓(𝑐 + ℎ) − 𝑓(𝑐))(𝑓(𝑐 + ℎ) −

𝑓(𝑐)) ok. 
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Now, what you do is; you take  𝑔(𝑓(𝑐)) to the other side. So, 𝑔(𝑓(𝑐 + ℎ)) − 𝑔(𝑓(𝑐)) =

𝑔′(𝑓(𝑐))(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) + 𝐸2(𝑓(𝑐 + ℎ) − 𝑓(𝑐))(𝑓(𝑐 + ℎ) − 𝑓(𝑐)) ok; this is what you 

will get. Now, dividing both sides by ℎ and taking ℎ going to 0, let us see what happens. 

So, divide both sides by ℎ and take ℎ going to 0 ok. What you will end up with is  

𝑔′(𝑓(𝑐))(𝑓(𝑐+ℎ)−𝑓(𝑐))

ℎ
 + 

𝐸2(𝑓(𝑐+ℎ)−𝑓(𝑐))(𝑓(𝑐+ℎ)−𝑓(𝑐))

ℎ
, ok. I hope, I have not made any errors; I do 

not think so.  
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Now, as limit ℎ goes to 0, this quantity just becomes 𝑓′(𝑐),right,  and this quantity also becomes 

𝑓′(𝑐). But this quantity which is there inside 𝐸2, this will approach 0 because 𝑓 is going to be 

continuous at the point 𝑐 because 𝑓 is differentiable at the point 𝑐. And we know that as the 

inside part of 𝐸2 goes to 0, 𝐸2 must also go to 0. In fact, 𝐸2 multiplied by ℎ, sorry; in fact, 𝐸2 

divided by ℎ itself will go to 0 as ℎ goes to 0. So, even without that division by ℎ, it has to go 

to 0. 

So, this whole thing as ℎ goes to 0 becomes 𝑔′(𝑓(𝑐))𝑓′(𝑐) as required. So, viewing derivatives 

in terms of linear approximations gives a more transparent proof of the chain rule, at least in 

my opinion. This is a course on real analysis and you have just watched the module on the basic 

properties of the derivative.  


