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Recall the following Dirichilet function, that we had introduced a couple of weeks ago. This 

function was defined to be 𝑓(𝑥) = 1, if 𝑥  ∈ 𝑄 and 0 if 𝑥 ∈ 𝑅 −  𝑄. So, this is a function that 

sort of moves around between 1 and 0. Let us see what kind of discontinuities this function has.  
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Now, suppose 𝑥  ∈ 𝑅, it does not matter whether it is irrational or rational; then any interval 

(𝑥 − ε, 𝑥 + ε), if you take, let us not take ε, let us take δ. Any interval (𝑥 − δ, 𝑥 + δ) will 

contain both the point 𝑞 that is rational and a point 𝑐 that is irrational right.  

We have already seen that 𝑄 is dense in 𝑅; so, any interval (𝑥 − δ, 𝑥 + δ), δ >  0 will contain 

both the rational point as well as an irrational point. So, 𝑓(𝑞) = 1 whereas, 𝑓(𝑐) = 0 ok. So, 

this just shows that 𝑓 is not continuous at 𝑥. 
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So, the set of discontinuities; so, the set of points of discontinuity of 𝑓 is just 𝑅; every single 

point on the real line is a point of discontinuity. So, it is a pretty weird function ok. Now, let 

me introduce another weird function; this is called the Thomae function.  

Now, the definition is somewhat similar to the Dirichilet function, but it differs at a crucial 

point. This is defined to be 𝑓(𝑥) = 0, if 𝑥 is irrational that is the same whereas, it is equal to 
1

𝑛
  

if 𝑥 is rational and 
𝑚

𝑛
 is the least form of 𝑥 with 𝑛 ≥ 0.  

What you do is you take this rational number and write it as 
𝑚

𝑛
; move if there is a negative sign, 

let the negative sign be stuck to the number 𝑚, cancel off all common factors. So, it is left in 

the least form.  

So, to make this precise you can just say 𝑔𝑐𝑑(𝑚, 𝑛) = 1. So, the greatest common divisor is 

just 1. So, in this scenario 
𝑚

𝑛
 is said to be in its least form, just set it to be 

1

𝑛
 if 𝑥 ∈ 𝑄. 
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Then at what points at what points of 𝑅 is this function continuous? At precisely what points 

is it continuous? What is its, in other words, what is its set of discontinuity? for clarity let me 

also define 𝑓(0) precisely, 𝑓(0) is taken to be 1 ok.  



So, we have defined 𝑓(𝑥) = 0, if 𝑥 ∈ 𝑅 −  𝑄, equal to 
1

𝑛
 if 𝑥 ∈ 𝑄 and 

𝑚

𝑛
 is the least form of 𝑥 

and 𝑓(0) is taken to be 1 ok. Now, the question is at what points of 𝑅 is this function 

continuous, what is its set of discontinuity?  

Now, let us take 𝑥 ∈ 𝑄, ok. Then we can always find a sequence of irrationals 𝑥𝑛 converging 

to 𝑥. But, 𝑓(𝑥𝑛) is all 0, that is the way it was defined, but and 𝑓(𝑥) is definitely not 0 right. 

Irrespective of what rational number you choose you either get 
1

𝑛
 or in the case you are at the 

point 0 you get 1 ok. 
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So, definitely 𝑄 is in the subset of 𝐷, set of discontinuities. So, the Thomae function definitely 

is not continuous at each point of the rational numbers. What about an irrational number? Here 

is where a fun thing happens, let us 𝑐 ∈ 𝑅 be irrational ok. Now, observe what happens; let 𝑞𝑛 

converge to 𝑐 be rational numbers ok.  

Now, observe that for any given natural number capital 𝑁, there are only finitely many rationals 

of the form 
𝑚

𝑁
 ,  that are in any given neighborhood of; I will not use the word neighborhood, 

any given open interval around 𝑐.  
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So, take this 𝑐, take (𝑐 − δ, 𝑐 + δ), take this open interval, δ > 0 , ok. So, here you have the 

point 𝑐, here you have (𝑐 − δ), here you have (𝑐 + δ).  

What this is saying is there are only finitely many rationals of the form 
𝑚

𝑁
 that are in any given 

open interval around 𝑐. Why is this? Well, think about this; imagine you have put a ruler on 

the real line. The rulers are the rather a scale whose rulings are all separated by 
1

𝑁
, ok.  

Imagine you have put a ruler on the real line separated by 
1

𝑁
. So, if the origin is here you have 

1

𝑁
, you have 

2

𝑁
, you have 

3

𝑁
, so on ok. So, it is obvious that only finitely many such markings 

will be contained in (𝑐 − δ, 𝑐 + δ) that is obvious. So, and these will correspond, these will 

correspond to the various numbers of the form 
𝑚

𝑁
  that are in any given, that are in this interval 

(𝑐 − δ, 𝑐 + δ).  

So, I leave it as an easy exercise to make this intuition precise; exercise: make this intuition 

precise. In fact, a better exercises: write down a formula for determining the maximum number 

of points 
𝑚

𝑁
  that are in (𝑐 − δ, 𝑐 + δ). In fact, you can write a formula that tells you the 

maximum number of numbers of the form 
𝑚

𝑁
, that are in (𝑐 − δ, 𝑐 + δ) ok. 



Regardless of whether you are convinced by this ruling argument or if you want to make this 

precise, it is up to you. Regardless, I am going to take it that you understand that in this interval 

(𝑐 − δ, 𝑐 + δ) there are only finitely many rationals 
𝑚

𝑁
. 
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What does this show? Well, this shows that given the sequence 𝑞𝑛 converging to 𝑐, only finitely 

many of the terms can have 
1

𝑁
  in the denominator in the least form.  

Well, why is this the case? Well, again you can expand it and give a mathematically precise 

reason, but the reason is as follows. Given any open interval (𝑐 − δ, 𝑐 + δ), eventually the 

terms of the sequence will have to be in this interval. And, we already know that there are only 

finitely many such points of the form 
𝑚

𝑁
  in this interval. 

So, if the very last point closest to 𝑐 is here, then if I choose a much smaller δ and I choose this 

new interval, then none of the points of the form 
𝑚

𝑁
  are going to be in this new interval ok. 

Note, I am crucially using the fact that 𝑐 is irrational; that means, the markings of the ruler can 

never coincide with 𝑐, they will have to be, they can be near 𝑐, but they cannot be arbitrarily 

close to 𝑐. 

So, I can always choose a much smaller interval; let us say (𝑐 −
δ

10,000
, 𝑐 +

δ

10,000
) such that 

none of these points of the form 
𝑚

𝑁
  are in this new interval. But, the sequence 𝑞𝑛 converges to 



𝑐; so, 𝑞𝑛 must eventually be in this newer open interval and here there are none. So, after a 

point all the terms 𝑞𝑛 cannot have the form 
1

𝑁
  in the denominator.  
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So, this means |𝑞𝑛| < 
1

𝑁
  for suitably large small 𝑛 ok. Why is this? Well, you have to think 

about this for a moment, you just look at 
1

2
,

1

3
, …, 

1

𝑁
; there are only finitely many rational 

numbers which have 1, 2, 3, 4, … , 𝑁 in the denominator.  

If you choose a small enough neighbourhood around this point 𝑐, then none of those rational 

numbers can be in this small enough neighbourhood. Then what happens is if 𝑞𝑛 is suitably 

large then 𝑞𝑛’s are all going to be in this small neighbourhood around this point 𝑐. 

Then none of them can have the denominator of the form 
1

𝑁
, 

1

𝑁−1
,… ,1; that means, the 

denominator has to be greater than 𝑁. That means, |𝑓(𝑞𝑛)| < 
1

𝑁
  for suitably large 𝑛. This 

proves that 𝑙𝑖𝑚𝑞𝑛→𝑐 𝑓(𝑞𝑛) =  0 ok.  

So, I have been very very intuitive here, a lot of things I have explained verbally without writing 

down. So, that is all a ploy of mine to get you to solve something non-trivial on your own. 

Rigorously prove the above ok. What have we shown? We have shown that if you take any 

rational sequence 𝑞𝑛 converging to 𝑐, then 𝑓(𝑞𝑛) must go to 0. 



Obviously, if you take an irrational sequence converging to 𝑐, 𝑓 of that sequence; obviously, 

converges to 0; they will all be 0. Putting this together, 𝑓 is actually continuous at the point 𝑐.  

So, rigorously prove the above 𝑓 is continuous on 𝑅 −  𝑄. So, I want you to write down a 

rigorous proof of this making all my verbal arguments mathematically precise. It is not hard; 

the idea is the hard part, converting it to the mathematical proof is not that hard ok.  
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What does this show? This shows that 𝐷, the set of discontinuities is 𝑄. So, we have got some 

interesting stuff, we have found a function which is very weird; by the way this function is also 

called the salt and pepper function; that is a nice terminology. It is called the salt and pepper 

function. So, this function, the Thomae function has set of discontinuities precisely the set 𝑄.  

So, the next question is what sets can be the sets of discontinuity? Precisely, what sets can be 

the sets of discontinuity? It is very easy to see that any finite set can be the set of discontinuity, 

that is I leave it to you as a very simple exercise. And, we have just seen that the complicated 

set 𝑄 can be the set of discontinuities.  

We have seen that the whole set 𝑅 can be the set of discontinuities. What about some set like 

𝑅 −  𝑄, can this be the set of discontinuities? Can an open interval be a set of discontinuity, 

open interval? Can a closed set, closed interval be set of discontinuity? Well, these are 

questions that have to be answered. So, but before that, let us give a definition that allows us 

to study discontinuities in the first place.  
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Definition: let 𝑓 ∶ 𝐴 → 𝑅 be a function and 𝑥 ∈ 𝐴. We want to see what happens if 𝑓 is not 

discontinuous at the point 𝐴. We want to somehow quantify the discontinuity. How we do that 

is we define the 𝑜𝑠𝑐𝑥(𝑓). This is denoted oscillation at 𝑥 of 𝑓 to be just the 

lim
𝑟→0

𝑑𝑖𝑎𝑚 𝑓 ((𝑥 − 𝑟, 𝑥 + 𝑟) ∩ 𝐴) ok; limit of diameter of this set.  
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So, let me just write that down precisely. This is lim
𝑟→0

𝑑𝑖𝑎𝑚 𝑓 ((𝑥 − 𝑟, 𝑥 + 𝑟) ∩ 𝐴). Now, I must 

tell you what this diameter is right, that was not something that we have studied so far.  



Well, that is nothing, the diameter of a set 𝑆 is just the largest possible distance between two 

points of 𝑆. How do we capture that? Well, the 𝑑𝑖𝑎𝑚 (𝑆) = su p{ |𝑥 − 𝑦|: 𝑥, 𝑦 ∈ 𝑆}, ok.  

If you think about this, it will turn out that the diameter of a circle in 𝑅2; though we have just 

defined it for 𝑅, you can think of similar definitions for 𝑅2. The diameter of a circle in 𝑅2 will 

just turn out to be the usual length of the diameter ok. If you take any set 𝑆, you look at various 

points 𝑥 , 𝑦 coming from 𝑆, look at the distances, look at a maximum possible distance that is 

called the diameter. 

Now, what is this 𝑜𝑠𝑐𝑥(𝑓) measuring? Well, it is measuring how large is the image of 𝑓 near 

the point 𝑥. If the function is not continuous then you expect the function to have a non-zero 

oscillation at the point 𝑥 and that is indeed the case that is indeed the case. So, I am going to 

leave it to you to prove this very easy proposition, very easy proposition.  

If 𝑓 or rather let me just phrase it this way, let me just 𝑓 is continuous at 𝑥 if and only if the 

𝑜𝑠𝑐𝑥(𝑓) = 0. So, if the oscillation is 0 then the function 𝑓 is continuous, if the function is 

continuous then the oscillation is 0. So, the oscillation measures whether the function is 

continuous or not, but it also quantifies how far away it is from being continuous at the point 

𝑥 ok. 

In the next module, we shall use this oscillation to study the discontinuities of a monotone 

function; recall monotone functions are those that are either increasing or decreasing. And, we 

will then use this oscillation function to measure or rather to prove what kind of states can be 

the set of discontinuities.  

The answer is surprisingly not all the subsets of 𝑅. The subsets of 𝑅 that are allowed to be 

discontinuities are special and we will exactly see what they are. And the oscillation, a measure 

of how far a function is away from being continuous is a key tool. This is a course on real 

analysis, and you have just watched the module on discontinuities.  


