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All open intervals are also open sets thankfully. How complicated can an arbitrary open set 

look like? In this module we shall answer this question. I will directly state the theorem. 

Theorem: Any open set 𝐺 ⊆ 𝑅 is a countable union of open intervals; here countable of course 

includes the possibility of finite. 

Proof: First if 𝐺 =  ϕ, nothing to prove because the empty set is trivially an interval by our 

definition of an open interval and there is nothing to prove. G is just the union of just one open 

interval which is an empty set. 

Suppose 𝐺 ≠ ϕ. We have to show where 𝐺 is a union of open intervals and there are only 

countable many such open intervals. How do we do this? Well, consider the relation ~ on G 

defined by 𝑎~𝑏 if and only if [min(𝑎, 𝑏) , max(𝑎, 𝑏)] ⊆ 𝐺. 

So, consider two points 𝑎, 𝑏 look at their minimums, look at their maximums and look at the 

closed interval created by the minimum and maximum; then 𝑎~𝑏 if and only if 

[min(𝑎, 𝑏) , max(𝑎, 𝑏)] ⊆ 𝐺. Now, as you can guess what I am going to prove is that this is an 

equivalence relation.  
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~ is an equivalence relation. How do we show this? Well, 𝑎 is clearly related to 𝑎 because the 

closed interval [𝑎, 𝑎] = {𝑎}, which is obviously going to be a subset of 𝐺. 

So, reflexivity is obvious. Similarly, if 𝑎~𝑏, then obviously 𝑏~𝑎, right because this 

min(𝑎, 𝑏) , max(𝑎, 𝑏) will be the same. Now, suppose if 𝑎~𝑏 and 𝑏~𝑐, then note that 

[𝑚𝑖𝑛(𝑎, 𝑏) , max(𝑎, 𝑏)],   [𝑚𝑖𝑛(𝑏, 𝑐),   𝑚𝑎𝑥(𝑏, 𝑐)] ⊆ 𝐺 ok. Now, this is best proved by just 

giving a simple picture.  

We can assume that 𝑎 is like this, 𝑏 is like this, 𝑐 is like this, that is one case. Well, we already 

know that this closed interval is a subset of 𝐺 and this closed interval is also a subset of 𝐺. So, 

consequently this subset [𝑎, 𝑐] ⊆ 𝐺  also because it is just the union of the closed interval [𝑎, 𝑏] 

and closed interval [𝑏, 𝑐]. 

Now, similarly there are other possible configurations of a, b, c and in each one of those you 

can trivially see that it will always be the case that [min(𝑎, 𝑐) , max(𝑎, 𝑐)] is always going to 

be a subset of 𝐺. 
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So, depending on the relative positions of a, b, c; a, b, c it is easy to see it is easy to see that 

[min(𝑎, 𝑐) , max(𝑎, 𝑐)], closed interval is a subset of 𝐺 ok. 

Please finish this argument it is rather easy. So, now, that we have an equivalence relation, let  

𝐶𝑎 denote the equivalence class of 𝑎 ok. Now, what will happen what will happen if you take 

union of 𝐶𝑎? What will happen if you take union of 𝐶𝑎? Well, I just call this 𝐼𝑎. I define 𝐼𝑎 to 

be union of 𝐶𝑎, ok. 
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First observe that if b, c are elements of 𝐼𝑎, then this interval [𝑏, 𝑐], if 𝑏 <  𝑐 or [𝑐, 𝑏], if 𝑐 <

 𝑏, both are, I mean not both, one of them is a subset of 𝐺 right. 

In fact, one of them would be, I will not say subset of 𝐺 that is not clear, will be a subset of 𝐼𝑎 

therefore, a subset of 𝐺. Why will it be subset of 𝐼𝑎? Simply because look at the definition of 

this equivalence relation. It says that the minimum of the two, maximum of the two should be 

a subset of 𝐺. 

Therefore, if you take these points 𝑏, 𝑐 ∈ 𝐼𝑎; that means, the if you look at the min{ 𝑏, 𝑐}, 

max{ 𝑏, 𝑐} should also be in 𝐼𝑎 and that will just follow from transitivity when you apply it with 

the third element 𝑎 ok. So, in any case please check this; this is also fairly easy to see, fine. 

So, what has happened is 𝐼𝑎 is a connected set. ok. Not only that 𝐼𝑎 is a connected set, it is a 

connected set that is not a singleton set. Why is that because, this set 𝐺 is open. So, 

(𝑎 − ε, 𝑎 + ε) will be a subset of 𝐺 and you can clearly see that this will also have to be a 

subset of 𝐼𝑎 ok, where this ε is suitably small. 

Now, because of this fact that (𝑎 − ε, 𝑎 + ε) will be a subset of 𝐺 and therefore, a subset of 𝐼𝑎 

it follows that 𝐼𝑎 is a connected open set fine. 
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So, what have we got? What we have got is the following. We have got for each a for each a, 

a possibly infinite open interval ok. 



So, to be 100 percent precise, I must say countable union of open interval,s possibly infinite. I 

am allowing intervals where one or both endpoints could be infinity. So, you could have the  

open interval (−∞, 𝑐) or the open interval (𝑐, ∞) those are allowed in this theorem ok. 

So, coming back to the proof, what we have is for each a, possibly infinite open interval 𝐼𝑎. 

Now, if 𝑎, 𝑏 are not related, then 𝐼𝑎 ∩ 𝐼𝑏 = ϕ , ok. 
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Why is this the case? Well, if not; then it is easy to see that there exist 𝑐 ∈ 𝐼𝑎 ∩ 𝐼𝑏 such that 

𝑎~𝑐 and 𝑏~𝑐 which implies 𝑎~𝑏, ok. 

So, if it were the case that 𝐼𝑎 ∩ 𝐼𝑏 ≠ ϕ, then in fact, I need not write there exist, then for all. 

Then if you take some 𝑐 ∈ 𝐼𝑎 ∩ 𝐼𝑏, then that 𝑐 will be related to both 𝑎 and 𝑏, therefore, 𝑎 and 

𝑏 are related which is not possible ok. So, what we have managed to do is we have shown that 

𝐺 is a disjoint union of the 𝐼𝑎’s, which I will denote by the square cup, disjoint union of various 

𝐼𝑎’s ok. 

So, what I am doing is, I am essentially going to pick one element 𝐺 and look at the equivalence 

class 𝐶𝑎 and take the union and get 𝐼𝑎, then take another element 𝑏 which is not related to 𝑎 

then I will get another interval. In this way I can exhaust 𝐺 as a disjoint union of open intervals 

ok. So, better to actually say, 𝐺 is the union of the collections 𝐼𝑎, such that 𝐼𝑎, 𝑎  comes from 

𝐺 and this is a partition of 𝐺 ok. 



So, any two elements in this collection 𝐼𝑎 such that 𝑎 comes from 𝐺 will either be disjoint or 

will be equal. So, therefore, this will form a partition. So, we have managed to write 𝐺 as a 

countable union not a countable union as a disjoint union of intervals. So, in fact, we have got 

some things stronger than what we have stated. So, let us put that; is a countable disjoint, 

disjoint union of open intervals, possibly infinite. 

So, we have strengthened. In fact, that is what I wanted to set out to prove, I just forgot 

mentioning that this is going to be a disjoint union ok. So, now, we have got 𝐺 as the union, 

why is it countable? Well, I am going to produce a list for you. 

(Refer Slide Time: 14:34) 

 

How am I going to produce a list? Choose for each 𝐼𝑎, a rational number 𝑟𝑎 ok. Then all the 

different members there are, many of them that coincide simply because this is a partition. 

So, if 𝐼𝑎 ∩ 𝐼𝑏 ≠ ϕ, then 𝐼𝑎 = 𝐼𝑏. What I do is I just choose one interval. I mean one 𝐼𝑎 if there 

is a different 𝐼𝑎 then I put it there. If there is another 𝐼𝑎, that is the same, then I discard it. So, 

that means, I am just looking at although distinct members of this, I can just write it as, I can 

consider a map 𝑓: {𝐼𝑎} → 𝑄. 

And that is given by this 𝐼𝑎 gets mapped to 𝑟𝑎 ok, and this map is injective. This map is injective 

because in this collection 𝐼𝑎, I am explicitly discarding the repeated members ok. Now, show 

that the elements of this collection 𝐼𝑎 can be listed. 



Once you have a set and an injective mapping to a countable set, then that set is countable. You 

have already solved this as an exercise before, please revisit that again ok. So, this concludes 

the proof. So, every open set in 𝑅 has quite a simple structure. It is either the empty set or its 

going to be a countable union of disjoint open intervals. Many of those open intervals could 

possibly be of infinite length that means, I am allowing the endpoints to be −∞ or  ∞. 

This is a course on real analysis, and you have just watched the module on the structure of open 

sets. 


