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In this module, I am going to introduce yet another type of sets defined using closed and open 

sets that is another topological property. So, the definition is as follows. Definition : a set 𝑆 that 

is closed and such that every point is a limit point of 𝑆 is said to be a Perfect Set.  

Now, I would say that this is not the perfect choice of terminology. Mathematicians, if not 

anything are never known for creative naming of things. So, I do not know why these are called 

perfect sets, but this is what we have been handed down by our ancestors ok.  

So, examples, well, closed intervals are perfect. The whole of 𝑅 itself is perfect and for non 

examples, finite sets are never perfect except of course, the pathological empty set. The empty 

set is also a finite set ok. Now, we are going to prove that a perfect set has always got to be 

uncountable. 
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This is a nice theorem that illustrates a number of things that we have been using. Theorem, 

any non empty perfect set is uncountable. Let us prove this. Suppose 𝑆 were countable, then 

list out the elements 𝑥1, 𝑥2, 𝑥3, … so on list out these elements be a list of elements of 𝑆. Now, 

note that each 1 of these elements 𝑥1, 𝑥2, 𝑥3, … they are all going to be limit points of the set 𝑆 

right. 

So, what we do is the following consider some closed interval 𝐼1 such that 𝑥1 ∈ 𝑖𝑛𝑡(𝐼1). It is 

not one of the end points of the closed interval 𝐼1, somewhere inside you choose 𝑥1. So again 

a picture which is worth a thousand proofs.  
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So, you have 𝑥1 and you have this interval 𝐼1 ok. Now, because 𝑥1 is not isolated, it is a limit 

point, we can find some 𝑦1 ∈ 𝑆 such that 𝑦1 is there in interior of 𝐼1 and 𝑦1 ≠ 𝑥1. Actually this 

second part is not needed. I will do it in the next step, such that 𝑦1 is not 𝑥1 ok. So, there will 

be some 𝑦1 simply because this 𝑥1 is not an isolated point. 
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I am choosing this 𝑦1 not to be equal to 𝑥1 that is what the meaning of 𝑥1 is the limit point is 

ok. Now, choose 𝐼2 such that 𝐼2  ⊆ 𝐼1. 𝑥1 ∉ 𝐼2 and 𝑦1 is in the interior of 𝐼2. So, now we have 

chosen this 𝐼2 such that 𝐼2  ⊆ 𝐼1 and 𝑥1 ∉ 𝐼2 and 𝑦1 is in the interior of 𝐼2. 
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Now, what we do is the following choose a point 𝑦2, which is there in interior of 𝐼2. Such that 

𝑦2 ≠ 𝑥2 choose a point like this. Why does such a point exist, well, such a point exists because, 

𝑦1 after all is an element of 𝑆. I should mention 𝑦2 is also there in 𝑆 of course, 𝑆 intersect 

interior of 𝐼2. 

Because, 𝑦1 is there in 𝑆 it is going to be a limit point of the set 𝑆, because it is a limit point of 

the set 𝑆 there are going to be infinitely many points of 𝑆 which will be there in interior of 𝐼2. 

Because, there are infinitely many points of 𝑆, which are there in interior of 𝐼2. I can always 

pick this 𝑦2 such that 𝑦2 ≠ 𝑥2 ok. 

So, now zooming the previous picture what has happened is we have this 𝐼2 and in this 𝐼2 we 

have our element 𝑦1 we are choosing a 𝑦2 here ok. Now, as you can guess we are going to 

choose 𝐼3, we are going to choose 𝐼3 ⊆ 𝐼2 such that such that neither 𝑦1 nor 𝑥2 are elements are 

elements of 𝐼3. 

But 𝑦2 is there in the interior of 𝐼2 ok. Now, we are going to choose another interval 𝐼3 like 

this. Note this is why I required 𝑦2 not to be equal to 𝑥2, if 𝑦2 happen to be equal to 𝑥2. I cannot 

do this there is no way to do this ok.  
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Now, repeat this argument, that means, because 𝑦2 is a limit point of the set 𝑆 there is a 𝑦3 

which is there in this interval 𝐼3 and such that this 𝑦3 is not equal to 𝑥3, ok. And then choose 

an interval 𝐼4 which is subset of 𝐼3 so on and so forth. So, repeat this argument to get a sequence 

of intervals 𝐼𝑛, such that 𝑥𝑛−1 ∉ 𝐼𝑛, ok. But, 𝐼𝑛 ∩ 𝑆 ≠ ϕ. ok. 

Now, 𝑆, if it were a perfect set, 𝑆 would be closed, if 𝑆 were a perfect set it will be closed. 

Therefore, 𝐼𝑛 ∩ 𝑆 will be closed and bounded. And therefore, compact by Heine Borel theorem; 

that means, by Cantors intersection theorem, intersection of this 𝐼𝑛 intersect 𝑆 is not the empty 

set, right. 

So, there has to be some 𝑥 in the above intersection, right. But, that is simply not possible why 

is this not possible? Well, none of the 𝑥𝑛’𝑠 can be there in this intersection, because 𝑥𝑛−1, is 

not going to be there in 𝐼𝑛. But, this is supposed to be an exhaustion of this list is supposed to 

be an exhaustion of the elements of 𝑆, this simply leads to a contradiction ok, hence proved.  
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So, this is yet another application of a variant of the nested intervals theorem to show that any 

perfect set has to be uncountable. Now, I am going to define one of the most fascinating objects 

in topology called the Cantor set. This will turn out to be an exotic example of a perfect set, it 

has a number of weird properties one can in fact, spend several weeks exploring all the 

properties of the Cantor set. Please check the reference below if you are interested in more 

about the Cantor set ok. 

Let us check some properties of the Cantor set, before that I have to define it. Look at the closed 

interval [0, 1]. I just call 𝐶0 = [0,1], ok. Now, 𝐶1 = [0,
1

3
] ∪ [

2

3
, 1], I just remove the middle 

one third, I just remove that, that is just  (
1

3
,

2

3
), right.  

So, I will be left with [0,
1

3
] ∪ [

2

3
, 1]. I am just opening them removing the middle open interval 

(
1

3
,

2

3
). Now, 𝐶2, what I do is the following I remove the middle one third here. The middle one 

third here, well what is that going to be, well, think about this, that is going to be an interval of 

size 
1

9
 right. 

So, it is going to be [0,
1

9
] then (

1

9
,

2

9
) has been completely removed from this ok, (

1

9
,

2

9
) has 

been completely removed from this. So, what will remain is union [
2

9
,

3

9
] which is just 

1

3
 right 

which is just 
1

3
. And that is going to be union 

2

3
,   



Now, I need to figure out what is the next one after  
2

3
. So, that is just 

2

3
 + 

1

9
, if you quickly do 

the arithmetic this is going to be 
7

9
 right. So, this is going to be 

7

9
 ok. Now, the open interval (

7

9
, 

8

9
) is removed. So, this is going to be union [

8

9
, 1] ok. 
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So, I hope the procedure is clear so, you successively define 𝐶1, 𝐶2𝐶3 so on and in 𝐶𝑛 what you 

do is you look at each piece of the preceding union and remove the middle one third out of it 

ok. Now, I am going to leave an exercise. Give a formula for this, hint: think 
1

3𝑛, that is the 

vague hint I am giving you, give a formula for how 𝐶𝑛 is going to look ok. Now, what are the 

properties of the 𝐶0, 𝐶1, 𝐶2, 𝐶𝑛 well each 𝐶𝑖 is compact. 

Because, it is closed and bounded its closed because, it is a finite union of closed intervals, its 

compact because its bounded also ok. Therefore, it is closed and bounded therefore, its compact 

look at intersection of 𝐶𝑛. This is going to be a non empty closed set, why is it going to be a 

non empty set? 

Because, by Cantors intersection theorem again this is going to be a closed set, but it is also a 

bounded set therefore, its compact this is going to be a compact set it is a closed set because it 

is an intersection of closed sets. So, we have defined this set 𝐶 the Cantor set as the intersection 

of the sets obtained by successively removing the middle one thirds starting with the interval 

close [0,1] ok.  



Now, observe the following, at the first step, we removed one third length interval right. The 

middle one third the interval length is 
1

3
 at the second step. We removed two 

1

9
 length interval 

ok, consequently we ended up with 4 intervals. 
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Then we removed one third of that so, 4 into 
1

27
 length interval ok. So, you see where this is 

going, let us look at the sum of the lengths of intervals we have removed, its 
1

3
 + 2 ⋅ 

1

9
 + 4 ⋅ 

1

27
 

+ 8 ⋅ 
1

81
 + … , ok. 

Now, this is just a geometric series the first term is 
1

3
 whereas, the common ratio 𝑟 is clearly 

2

3
 

so, 
𝑎

1−𝑟
 so, its 1 −

2

3
 in the denominator and its equal to 1 ok. So, what this means is the lengths 

of intervals that we have removed from the Cantor set sum up to 1. In some sense we have 

removed the whole of the interval [0,1] at least from this naive argument, but that is not the 

interesting thing. 
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The more interesting thing I am not saying this is not interesting, sorry about that this is 

interesting. But even more interesting is the fact that theorem the Cantor set is perfect the 

Cantor set is perfect, whoa this is fascinating the Cantor set is perfect, which means that its 

uncountable. 

So, even though you seem to have removed the entire length [0, 1] length interval, as the sum 

of the series shows the Cantor set is nevertheless uncountable. Because, the previous theorem 

says perfect sets are uncountable ok. But, before that let us come back and think about this 

Cantor set in some more depth, I said the Cantor set is nonempty by using a very powerful 

theorem called the Cantor intersection theorem. 

But that is pretty stupid of me because, you can show that the Cantor set is nonempty without 

appealing to any fascinating theorem like this just look at 0 and 1. Just look at 0 and 1 they are 

definitely going to be there in the Cantor set why are they definitely going to be there in the 

Cantor set? Because think about it for a moment. The only way by which these endpoints 0 and 

1 will not be there in the Cantor set is if they are removed at some point. 

But, at each stage we are only removing something from in between the Cantor set, right, not 

in between the Cantor set, in between the intervals that we have. So, these end point 0, 1 will 

never be removed because at each stage we are only going to remove something from in the 

centre, nice, 0 and 1 are there in the Cantor set. But, wait a second does not the same argument 



hold true for the point 
1

3
 and 

2

3
 yes it does. At each stage after 𝐶1 , 

1

3
 and 

2

3
 are never going to be 

touched, all successive removals will be coming from within the interval.  

Therefore, 
1

3
 and 

2

3
 will remain unscathed and will be there in the Cantor set 𝐶 as well ok. So, 

will be 
1

9
 , 

2

9
, 

7

9
 so on and 

8

9
. So, first the proof of this, the end points of any 𝐶𝑛 is an element in 

𝐶 ok, that is the first point. I want to make in this proof, the end points are all present in the 

Cantor set. How does this help us prove what we want? We want to show that if 𝑥 ∈ 𝐶, then 

there is a sequence there is a sequence 𝑥𝑛 ∈ 𝐶 − {𝑥} such that 𝑥𝑛 converges to 𝑥. 
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Please recall that this is enough to show that 𝑥 is a limit point ok. Now, what do we do to 

produce this sequence 𝑥𝑛, well let us go step by step let us look at this picture again. This point 

𝑥 has to be in 𝐶1 right its it has got to be in 𝐶1, its either there in [0,
1

3
] or it is there in [

2

3
, 1] 

there are only 2 possibilities for this ok. 

Now, if it happens to be in [0,
1

3
]  there are 3 possibilities its either 0 or its 

1

3
 or its somewhere 

in between, those are the 3 possibilities ok. So, so without loss of generality assume that 𝑥 is 

an element of [0,
1

3
]. If 𝑥 ≠ 0, let 𝑥1 = 0, if 𝑥 ≠

1

3
, let 𝑥1 =

1

3
 , ok. So, if it is one of the end 

points if choose the other end point ok. 



If 𝑥 is in the middle it really does not matter, the way I have written it 𝑥1 is sort of ambiguously 

defined, 𝑥1 is sort of ambiguously defined if 𝑥1 is there in the middle. But it does not matter 

choose any one of the end points if 𝑥 is actually somewhere in between [0,
1

3
], ok. So, what we 

have done is we have produced a point 𝑥1 in closed interval [0,
1

3
]. In fact, we have produced a 

point 𝑥1 in 𝐶 such that 𝑥1 ≠ 𝑥, right. 

Observe that mod |𝑥 − 𝑥1| ≤
1

3
. In fact, to be a 100 percent precise, I have to write less than or 

equal to, it can happen that its one of the end points and the choice of 𝑥1 is therefore, is the 

other end point excellent. Now, how do you choose 𝑥2 well do the same thing do the same 

thing for [0,
1

3
], right. 
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What do I mean by that look at [0,
1

3
], you are removing the middle one third. So, this is going 

to be 
1

9
 and this is 

2

9
, right 𝑥 has got to be either here or here 𝑥 has got to be either here or here 

depending on where 𝑥 is, choose 𝑥2 to be an end point not equal to 𝑥 ok.  

So, if 𝑥 was actually somewhere here, you could have chosen this 
1

9
 as the choice of 𝑥2 ok. It 

is clear that |𝑥 − 𝑥2| ≤
1

9
. In this way we can produce a sequence 𝑥𝑛 ∈ 𝐶, all are actually, they 

are actually all end points. 
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Sequence 𝑥𝑛 ∈ 𝐶 such that 𝑥𝑛 ≠ 𝑥 and |𝑥 − 𝑥𝑛| ≤
1

3𝑛 , in short 𝑥𝑛 converge to 𝑥. So, we have 

found the set 𝑥𝑛 ∈ 𝐶 such that 𝑥𝑛 ≠ 𝑥, and |𝑥 − 𝑥𝑛| ≤
1

3𝑛 which is just saying that 𝑥𝑛 converges 

to 𝑥. 

This shows that 𝑥 is a limit point. Therefore, 𝐶 is perfect. So, the Cantor set is a perfect set and 

therefore, it will be uncountable as well. Note that our argument the 𝑥𝑛’𝑠 we produce are very 

special they are just coming from the end points ok. 

But, you can check once you explore and give a formula for these end points which is an 

exercise that I have left long ago to you give a formula, it will be very easy to see that these 

end points, the collection of all these end points is actually a countable set ok. 

So, there are points in the Cantor set other than these end points, you might think that there are 

only these end points, but that is not true there are points other than these end points. Let me 

just end with one more exotic property of the Cantor set, this is rather easy to see, because the 

way it is defined itself will give this theorem and I am hesitant to call this a theorem. 

Let me just call it proposition the Cantor set has no interior point, well the proof of this is very 

easy. Proof: suppose it had an interior point. That means, some open interval (𝑎, 𝑏) is going to 

be a subset of the Cantor set. That is the only way by which the Cantor set can have an interior 

point. 



Suppose (𝑎, 𝑏) ⊂ 𝐶, this is simply not possible. I am not even going to write down the full 

proof, I am just going to focus here. Notice that at each stage in the construction of the Cantor 

set, the longest interval will be or not the longest interval each interval will be of length 
1

3𝑛 ok. 
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No interval of length greater than 
1

3𝑛 can be contained in 𝐶𝑛 ok. So, let us write that no interval 

of length greater than 
1

3𝑛 is a subset of 𝐶𝑛. So, since 
1

3𝑛; obviously, converges to 0, 
1

3𝑛  < 𝑏 −  𝑎 

for sufficiently large 𝑛 ok. 

Then, (𝑎, 𝑏) cannot be a subset of 𝐶𝑛, this is a contradiction. Actually this is not a contradiction 

yeah. This is a contradiction, I have assumed that I could have rewritten this proof as a direct 

proof by saying that no interval (𝑎, 𝑏) will be a subset of 𝐶𝑛. Therefore, no interval (𝑎, 𝑏) will 

be a subset of 𝐶. 

But, anyway since I have started with suppose (𝑎, 𝑏) ⊂ 𝐶. I will end with this is a contradiction. 

Hence, Cantor set 𝐶 has no interior point. ok. So, this is just a brief treatment of the Cantor set 

please check the reference. I have provided for a more extensive treatment. This is a course on 

Real Analysis and you have just watched the module on the Cantor set and perfect sets.  


