Real Analysis - |
Dr. Jaikrishnan J
Department of Mathematics
Indian Institute of Technology, Palakkad

Lecture — 20.1
Perfect Sets and the Cantor Set
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In this module, 1 am going to introduce yet another type of sets defined using closed and open
sets that is another topological property. So, the definition is as follows. Definition : a set S that

is closed and such that every point is a limit point of S is said to be a Perfect Set.

Now, | would say that this is not the perfect choice of terminology. Mathematicians, if not
anything are never known for creative naming of things. So, | do not know why these are called
perfect sets, but this is what we have been handed down by our ancestors ok.

So, examples, well, closed intervals are perfect. The whole of R itself is perfect and for non
examples, finite sets are never perfect except of course, the pathological empty set. The empty
set is also a finite set ok. Now, we are going to prove that a perfect set has always got to be

uncountable.
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This is a nice theorem that illustrates a number of things that we have been using. Theorem,
any non empty perfect set is uncountable. Let us prove this. Suppose S were countable, then
list out the elements x,, x,, x5, ... SO on list out these elements be a list of elements of S. Now,
note that each 1 of these elements x,, x,, x5, ... they are all going to be limit points of the set S

right.

So, what we do is the following consider some closed interval I; such that x; € int(l;). Itis
not one of the end points of the closed interval I;, somewhere inside you choose x;. So again

a picture which is worth a thousand proofs.
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So, you have x; and you have this interval I; ok. Now, because x; is not isolated, it is a limit
point, we can find some y; € S such that y, is there in interior of I; and y; # x,. Actually this
second part is not needed. | will do it in the next step, such that y, is not x; ok. So, there will

be some y; simply because this x; is not an isolated point.
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I am choosing this y; not to be equal to x; that is what the meaning of x; is the limit point is
ok. Now, choose I, such that I, < I;. x; & I, and y; is in the interior of I,. So, now we have

chosen this I, such that I, < I, and x; & I, and y; is in the interior of .
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Now, what we do is the following choose a point y,, which is there in interior of I,. Such that
Y, # X, choose a point like this. Why does such a point exist, well, such a point exists because,
y, after all is an element of S. | should mention y, is also there in S of course, S intersect

interior of 1.

Because, y, is there in S it is going to be a limit point of the set S, because it is a limit point of
the set S there are going to be infinitely many points of S which will be there in interior of I,.
Because, there are infinitely many points of S, which are there in interior of I,. | can always

pick this y, such that y, # x, ok.

So, now zooming the previous picture what has happened is we have this I, and in this I, we
have our element y, we are choosing a y, here ok. Now, as you can guess we are going to
choose 15, we are going to choose I; < I, such that such that neither y, nor x, are elements are

elements of I5.

But y, is there in the interior of I, ok. Now, we are going to choose another interval I; like
this. Note this is why | required y, not to be equal to x,, if y, happen to be equal to x,. | cannot

do this there is no way to do this ok.
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Now, repeat this argument, that means, because y, is a limit point of the set S there is a y;
which is there in this interval I3 and such that this y; is not equal to x5, ok. And then choose
an interval I, which is subset of /5 so on and so forth. So, repeat this argument to get a sequence
of intervals I,,, such that x,,_, € I,, ok. But, I, N S # ¢. ok.

Now, S, if it were a perfect set, S would be closed, if S were a perfect set it will be closed.
Therefore, I,, N S will be closed and bounded. And therefore, compact by Heine Borel theorem;
that means, by Cantors intersection theorem, intersection of this I,, intersect S is not the empty
set, right.

So, there has to be some x in the above intersection, right. But, that is simply not possible why
is this not possible? Well, none of the x,,’s can be there in this intersection, because x,,_,, IS
not going to be there in I,,. But, this is supposed to be an exhaustion of this list is supposed to

be an exhaustion of the elements of S, this simply leads to a contradiction ok, hence proved.
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So, this is yet another application of a variant of the nested intervals theorem to show that any
perfect set has to be uncountable. Now, I am going to define one of the most fascinating objects
in topology called the Cantor set. This will turn out to be an exotic example of a perfect set, it
has a number of weird properties one can in fact, spend several weeks exploring all the
properties of the Cantor set. Please check the reference below if you are interested in more

about the Cantor set ok.
Let us check some properties of the Cantor set, before that | have to define it. Look at the closed
interval [0, 1]. I just call C, = [0,1], ok. Now, C; = [0%] V] E 1], | just remove the middle

one third, | just remove that, that is just (%,g), right.

So, I will be left with [0, ﬂ U E 1]. I am just opening them removing the middle open interval
G%) Now, C,, what | do is the following | remove the middle one third here. The middle one
third here, well what is that going to be, well, think about this, that is going to be an interval of

. 1 .
size right.

So, it is going to be [O, é] then (%%) has been completely removed from this ok, (ég) has
been completely removed from this. So, what will remain is union E%] which is just § right

which is just % And that is going to be union %



Now, | need to figure out what is the next one after g So, that is just % + § if you quickly do
the arithmetic this is going to be g right. So, this is going to be g ok. Now, the open interval (g,

g) is removed. So, this is going to be union [% 1] ok.
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So, | hope the procedure is clear so, you successively define C;, C,C5 so on and in C,, what you

do is you look at each piece of the preceding union and remove the middle one third out of it
ok. Now, | am going to leave an exercise. Give a formula for this, hint: think 3in that is the

vague hint | am giving you, give a formula for how C,, is going to look ok. Now, what are the

properties of the C,, C;, C,, C,, well each C; is compact.

Because, it is closed and bounded its closed because, it is a finite union of closed intervals, its
compact because its bounded also ok. Therefore, it is closed and bounded therefore, its compact
look at intersection of C,,. This is going to be a non empty closed set, why is it going to be a

non empty set?

Because, by Cantors intersection theorem again this is going to be a closed set, but it is also a
bounded set therefore, its compact this is going to be a compact set it is a closed set because it
is an intersection of closed sets. So, we have defined this set C the Cantor set as the intersection
of the sets obtained by successively removing the middle one thirds starting with the interval
close [0,1] ok.



Now, observe the following, at the first step, we removed one third length interval right. The
middle one third the interval length is § at the second step. We removed two é length interval

ok, consequently we ended up with 4 intervals.
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Then we removed one third of that so, 4 into 2—17 length interval ok. So, you see where this is

going, let us look at the sum of the lengths of intervals we have removed, its §+ 2 - % +4- %

1
+8-—+..,0k
81

.. . . . .1 . . 2
Now, this is just a geometric series the first term is 3 whereas, the common ratio r is clearly 3

S0, ﬁ so, its 1 — % in the denominator and its equal to 1 ok. So, what this means is the lengths

of intervals that we have removed from the Cantor set sum up to 1. In some sense we have

removed the whole of the interval [0,1] at least from this naive argument, but that is not the
interesting thing.
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The more interesting thing I am not saying this is not interesting, sorry about that this is
interesting. But even more interesting is the fact that theorem the Cantor set is perfect the
Cantor set is perfect, whoa this is fascinating the Cantor set is perfect, which means that its

uncountable.

So, even though you seem to have removed the entire length [0, 1] length interval, as the sum
of the series shows the Cantor set is nevertheless uncountable. Because, the previous theorem
says perfect sets are uncountable ok. But, before that let us come back and think about this
Cantor set in some more depth, | said the Cantor set is nonempty by using a very powerful

theorem called the Cantor intersection theorem.

But that is pretty stupid of me because, you can show that the Cantor set is nonempty without
appealing to any fascinating theorem like this just look at 0 and 1. Just look at 0 and 1 they are
definitely going to be there in the Cantor set why are they definitely going to be there in the
Cantor set? Because think about it for a moment. The only way by which these endpoints 0 and

1 will not be there in the Cantor set is if they are removed at some point.

But, at each stage we are only removing something from in between the Cantor set, right, not
in between the Cantor set, in between the intervals that we have. So, these end point 0, 1 will
never be removed because at each stage we are only going to remove something from in the

centre, nice, 0 and 1 are there in the Cantor set. But, wait a second does not the same argument



hold true for the point § and S yes it does. At each stage after C; , %and %are never going to be

touched, all successive removals will be coming from within the interval.

Therefore, gand %will remain unscathed and will be there in the Cantor set C as well ok. So,

will be i , % gso on and g So, first the proof of this, the end points of any C,, is an element in

C ok, that is the first point. | want to make in this proof, the end points are all present in the
Cantor set. How does this help us prove what we want? We want to show that if x € C, then

there is a sequence there is a sequence x,, € C — {x} such that x,, converges to x.
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Please recall that this is enough to show that x is a limit point ok. Now, what do we do to

produce this sequence x,,, well let us go step by step let us look at this picture again. This point
x has to be in C; right its it has got to be in C;, its either there in [0, ﬂ or it is there in E 1]

there are only 2 possibilities for this ok.

Now, if it happens to be in [O, ﬂ there are 3 possibilities its either O or its é or its somewhere
in between, those are the 3 possibilities ok. So, so without loss of generality assume that x is
an element of [0, %] If x =0, letx; =0, if x # § let x; = % , Ok. So, if it is one of the end

points if choose the other end point ok.



If x is in the middle it really does not matter, the way | have written it x, is sort of ambiguously

defined, x, is sort of ambiguously defined if x; is there in the middle. But it does not matter

choose any one of the end points if x is actually somewhere in between [0, %] ok. So, what we

have done is we have produced a point x; in closed interval [O, &] In fact, we have produced a

point x; in C such that x; # x, right.

Observe that mod |x — x;| < § In fact, to be a 100 percent precise, | have to write less than or

equal to, it can happen that its one of the end points and the choice of x; is therefore, is the

other end point excellent. Now, how do you choose x, well do the same thing do the same

thing for [0, %] right.
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What do | mean by that look at [O, %] you are removing the middle one third. So, this is going

to be é and this is %, right x has got to be either here or here x has got to be either here or here

depending on where x is, choose x, to be an end point not equal to x ok.

So, if x was actually somewhere here, you could have chosen this § as the choice of x, ok. It

. 1 .
is clear that [x — x,| < 5 In this way we can produce a sequence x,, € C, all are actually, they

are actually all end points.
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1 .
Sequence x,, € C such that x,, # x and |x — x,,| < —, in short x,, converge to x. So, we have
31’1.

found the set x,, € C suchthat x,, # x,and |x — x,| < %Which is just saying that x,, converges

to x.

This shows that x is a limit point. Therefore, C is perfect. So, the Cantor set is a perfect set and
therefore, it will be uncountable as well. Note that our argument the x,,’s we produce are very

special they are just coming from the end points ok.

But, you can check once you explore and give a formula for these end points which is an
exercise that | have left long ago to you give a formula, it will be very easy to see that these

end points, the collection of all these end points is actually a countable set ok.

So, there are points in the Cantor set other than these end points, you might think that there are
only these end points, but that is not true there are points other than these end points. Let me
just end with one more exotic property of the Cantor set, this is rather easy to see, because the

way it is defined itself will give this theorem and | am hesitant to call this a theorem.

Let me just call it proposition the Cantor set has no interior point, well the proof of this is very
easy. Proof: suppose it had an interior point. That means, some open interval (a, b) is going to
be a subset of the Cantor set. That is the only way by which the Cantor set can have an interior

point.



Suppose (a, b) c C, this is simply not possible. | am not even going to write down the full

proof, I am just going to focus here. Notice that at each stage in the construction of the Cantor

set, the longest interval will be or not the longest interval each interval will be of length Bin ok.
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No interval of length greater than 3in can be contained in C,, ok. So, let us write that no interval

of length greater than 3% is a subset of C,,. So, since 3%; obviously, converges to 0, 3% <b-—a

for sufficiently large n ok.

Then, (a, b) cannot be a subset of C,,, this is a contradiction. Actually this is not a contradiction
yeah. This is a contradiction, | have assumed that | could have rewritten this proof as a direct
proof by saying that no interval (a, b) will be a subset of C,,. Therefore, no interval (a, b) will

be a subset of C.

But, anyway since | have started with suppose (a, b) < C. I will end with this is a contradiction.
Hence, Cantor set C has no interior point. ok. So, this is just a brief treatment of the Cantor set
please check the reference. | have provided for a more extensive treatment. This is a course on

Real Analysis and you have just watched the module on the Cantor set and perfect sets.



