Real Analysis - I Dr. Jaikrishnan J Department of Mathematics Indian Institute of Technology, Palakkad

Lecture – 15.4 Relationship between Limits and Continuity

(Refer Slide Time: 00:14)

Continuity.					
	Let				
an a	l let	DC E A	be a	limit	point.
1 hen	F B	Continu	ous at	X	iff
	lim Y-7 X	F(y) =	F(x).		
Prof:	ASS whe	fhd	r is	Continuo	is at
		X E > 0			

In this module, we are going to see what the Relationship between Limits and Continuity are. Since the definition of a limit was more or less almost exactly the same as the definition of continuity; there is no shock that both are intimately related to each other. The theorem is as follows.

Theorem: Let $F: A \longrightarrow \mathbb{R}$ be a function and let $x \in A$ be a limit point.

Note: I am taking $x \in A$, because I am going to talk about continuity at the point x and you can talk about continuity at a point only if that point is there in the domain. Whereas, to talk about limits, you need not require the point x to be actually in the domain of F, that is not essential;

Then F is continuous at x if and only if
$$\lim_{y \to x} F(y) = F(x)$$
.

A function is continuous at a point if and only if the limit as you approach that point is equal to the functional value. If you recall a slightly more elaborate version of this is what was used

as the definition of continuity in school; the left hand limit is equal to the right hand limit is equal to the functional value, right. Let us prove this and it is not hard.

Assume that, F is continuous at x; fix $\epsilon > 0$.

(Refer Slide Time: 02:31)

Then there is $\delta>0$, such that if $y\in A$ and $|y-x|<\delta$; then $|F(x)-F(y)|<\epsilon$. This is just the definition of continuity, which I am writing down for the seventeenth time, if my count is correct.

So, what does this mean? Well, this means $\lim_{y \to x} F(y) = F(x)$; it is word for word the same thing as the definition of limit, except that $0 < |y - x| < \delta$ is missing, but who cares and this statement says more than what is required for me, right.

So, immediately from the fact that f is continuous at x, it immediately follows that $\lim_{y\to x} F(y) = F(x)$. What about the other direction?

Suppose, $\lim_{y\to x} F(y) = F(x)$ and I have to write something down for the eighteenth time now. Fix $\epsilon>0$, then I am practically getting bored of this, something, if $0<|y-x|<\delta$, then $|F(x)-F(y)|<\epsilon$.

But this is exactly the same as the definition of continuity, except the point y = x is allowed; but at y = x, this inequality is easily satisfied, because |F(x) - F(x)| = 0. So, this means the definition of continuity at x is satisfied; because |F(x) - F(x)| = 0, that is why, right.

(Refer Slide Time: 04:36)

So, because the definitions were so similar, it is sort of trivial to see that continuity and limits are intimately tied to each other.

This is a course on Real Analysis and you have just watched the module on the Relationship between Limits and Continuity.