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Lecture — 6.3
Uncountability of the Real Numbers
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In this module, let us prove that the set R is uncountable. We will use the Nested intervals
property again to prove it; the common proof given in most textbooks is via decimal
expansion of Real Numbers. Since I have not made precise the decimal expansion of real

numbers and doing so is quite tedious, I prefer to use this approach.

Theorem: R is uncountable, the statement is simple enough. Let us prove this. Proof; suppose
we have a list of real numbers s1, 2,53, .. so on, ok. Let /1 be some closed interval that does
not contain si1. Well why does such an interval exist? Well that is obvious, say s1 is here, just

choose some interval like this, fine.
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Now, this is 1, let I2 € I1 be another closed interval; another closed interval such that

s2 & Iz, Why does such an interval exist? Well again just choose some say s2 is here, just

choose this interval, ok.

Now, consecutively choose Ir subset or rather fx+1 € Ik such that Sk+1 ¢ Ii+1, this can
always be done. Consider I'=mZ ik, running from 1 to oo: this is a non empty set,

nonempty set by Nested Intervals Theorem, ok.

Let s be in this intersection which I will just call 7; let s € I, then s is not there in this list,
ok. So, what we have done is, we have started out with a list, s1,s2, ss, .. of real numbers and

I have shown that there is some element that is not there in this list, but is a real number.

So, this proves that there is no way to list out the real numbers and if you recall our
discussions on cardinality; listing out the elements is another equivalent condition for being

countable, so that means R is uncountable.

So, the set of real numbers is an explicit example of a set that is uncountable and this also
shows that the number of real numbers that are there exceeds the number of rational numbers
in some sense; because the rational numbers is a countable set. This is a course on real

analysis and you just watched a module on the uncountability of R.
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