Real Analysis - I Dr. Jaikrishnan J Department of Mathematics Indian Institute of Technology, Palakkad

Lecture – 6.3 Uncountability of the Real Numbers

(Refer Slide Time: 00:14)

Theorem	IR is uncountable.
Proof:	Suppose we have a eist of
	real num bers
1.ex	I, be some closed internal that
2018	not contain S1.

In this module, let us prove that the set \mathbb{R} is uncountable. We will use the Nested intervals property again to prove it; the common proof given in most textbooks is via decimal expansion of Real Numbers. Since I have not made precise the decimal expansion of real numbers and doing so is quite tedious, I prefer to use this approach.

Theorem: \mathbb{R} is uncountable, the statement is simple enough. Let us prove this. Proof; suppose we have a list of real numbers $^{s_1,\,s_2,\,s_3,\,..}$ so on, ok. Let I_1 be some closed interval that does not contain s_1 . Well why does such an interval exist? Well that is obvious, say s_1 is here, just choose some interval like this, fine.

(Refer Slide Time: 01:59)

F1 {£1 73 S1 S2	NPTEL
Now let $I_2\subseteq I_1$ be another closed interval such that $S_2\notin I_2$.	
Consecutively, choose $I_{K_1} \subseteq I_K$ s.e. $S_{K_1} \notin I_{K_1}.$	
(onsided to $A = A = A = A$). This is a homeomorph set	
by NIT. let 86I. than 8 is not there in this list. In is uncountable.	

Now, this is I_1 , let $I_2 \subseteq I_1$ be another closed interval; another closed interval such that $s_2 \notin I_2$. Why does such an interval exist? Well again just choose some say s_2 is here, just choose this interval, ok.

Now, consecutively choose I_k subset or rather $I_{k+1} \subseteq I_k$ such that $s_{k+1} \notin I_{k+1}$, this can always be done. Consider $I = \bigcap_{k=1}^{\infty} I_k$, k running from 1 to ∞ this is a non empty set, nonempty set by Nested Intervals Theorem, ok.

Let s be in this intersection which I will just call I ; let $^s \in I$, then s is not there in this list, ok. So, what we have done is, we have started out with a list, $^{s_1, s_2, s_3, ...}$ of real numbers and I have shown that there is some element that is not there in this list, but is a real number.

So, this proves that there is no way to list out the real numbers and if you recall our discussions on cardinality; listing out the elements is another equivalent condition for being countable, so that means \mathbb{R} is uncountable.

So, the set of real numbers is an explicit example of a set that is uncountable and this also shows that the number of real numbers that are there exceeds the number of rational numbers in some sense; because the rational numbers is a countable set. This is a course on real analysis and you just watched a module on the uncountability of \mathbb{R} .