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The aim in this module is to show that the nested intervals property together with the 

Archimedean property actually imply Completeness, without further adieu let me state the 

theorem. Let  be an ordered field that has both nested intervals property and Archimedean 

property. Then  is complete. What I mean by  has nested intervals property is that 

intersection of nested closed intervals is always non empty and what I mean by Archimedean 

property is the corresponding conclusion in the statement of the Archimedean property that 

we saw holds true for this field .

Now, this theorem’s proof is very important in the sense that the idea behind the proof makes 

it very clear why we need both nested intervals property and Archimedean property to ensure 

that there are no holes. What we are going to do is we are going to get better and better 

approximations of the required least upper bound for a set and show that the intersection of 

all these approximations is going to be the required least upper bound, that is the basic idea.

So, what we do is start with a set that is bounded above. Let  be a nonempty bounded 

set, non empty set that is bounded above. We want to construct the required least upper 



bound. We proceed as follows, let  be any upper bound, that is a good place to start and let 

, take any element in .

(Refer Slide Time: 02:51)

Set , the closed interval .

Now, what is the rational or the logic behind this choice? Well, clearly if the set  has any 

least upper bound it has to lie in this interval , no choice,  is an element of the set. So, 

it necessarily the least upper bound has to be greater than  or at least as large as , greater 

than or equal to  and it has to be less than or equal to  simply because  is any upper 

bound, I mean some upper bound and the least upper bound is always less than or equal to 

any choice of an upper bound.

So, the required least upper bound has to be in this interval . Now, we will make this 

approximation better by setting , look at the two endpoints and just take the mean 

of these two, . Now, if  is also an upper bound for the set , then choose 

 else, . 

What is the logic behind this choice? if  is also an upper bound; that means, we have found 

an upper bound for the set  that is smaller than  for sure. So, we have a better upper 

bound and if  is not an upper bound for the set , then we have moved the left end point of 

the interval we have moved it to ; that means, we have chosen an element that is closer to 

the required least upper bound. Essentially what we have done is irrespective of which choice 



we take for , the size of  is half the size of . So, we have moved to a better 

approximation of the least upper bound ok.

Now, having chosen , , choose , and 

  if  is an upper bound for , else . In this way we 

successively construct the required nested intervals.
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Now, observe that by very construction. So, this , I will again call it  

. By construction, you can prove this rigorously by induction if you want to, but it should be 

very obvious to you that, .

So, what has happened is at each stage,  will be half the length of ,  will be one-fourth 

the length of  and  will be one-eighth the length of  so on and so forth. Here the length 

of the interval is just the right end point minus the left end point, the intuitive length of the 

interval. So, we have that these intervals are shrinking.

Now, it is an easy exercise for you to show that . This is a very easy exercise. You can 

show this by induction. Once you have that, we will have that these 's are a sequence of 

nested shrinking intervals, ok, let me not use the word sequence, I will just use 's are nested 

shrinking intervals ok.
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Therefore, by the nested shrinking intervals theorem, we must have a unique point in , 

say  let us call this , let us call the single point .

Now, I want you to do the following. Pause the video look, through the notes where we 

proved the nested intervals theorem, the Archimedean property, the nested shrinking intervals 

theorem and so on and make sure you understand that both the nested intervals property as 

well as the Archimedean property are indeed being used to conclude that there is a unique 

point  in the intersection.

So, in this one statement I am actually compressing several steps. I am leaving it to you to 

unwind these steps. It is very important that you do this exercise, please do that ok. So, at any 

rate we have found a point . Claim is that . How are we going to show this? Well, 

we use the fact that our choice of ’s were not arbitrary, but we were making better and 

better approximations, how do we do that?

Suppose, . Now, first of all observe that each , by our construction, is an upper bound 

for , that is how we constructed each one of the 's. We ensured that the right end point is 

always going to be an upper bound of . That at each stage we had two possible choices, we 

always chose that possibility that ensures that the right end point of each one of these 

intervals is always an upper bound, ok.

So, we have chosen the right end point as always an upper bound. Now, suppose  and 

assume . We have to show that  is a least upper bound, first of all let us see that  is 

in fact an upper bound. We have chosen , we want to reach a contradiction to this.
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Now, note that this means . Now, choose  such that . Again note 

that to choose such an  you have to use the Archimedean property. Please pause the video, 

this is a subtle point, make sure you understand how the Archimedean property comes into 

the picture here. First of all, the fact that  is used and then you use the Archimedean 

property to construct  so large that .

Now, that means  satisfies , ok, but, . In fact,  is the 

unique element in the intersection  , not just this particular one. Therefore,  cannot be 

an upper bound for the set . Why is this the case? Well here at this juncture let me just draw 

a picture.
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We have this interval  ok, we have this point  which is somewhere inside, we know 

that , this length is certainly less than , ok. That means,  because the 

entire length of this interval . So,  because the length of this 

interval is itself just maximum going to be , right?, in other words , ok.

So, this shows  is an upper bound,  is an upper bound. What remains  to be shown is that it 

is the least upper bound. So, if  is another upper bound that is smaller than , then we apply 

the same trick in a different manner. Then again choose  so large that  .
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Now, consider . Again if you carefully look at our construction the left end point  of any  

can never be an upper bound, can never be an upper bound, that is exactly the way these 

intervals  were constructed. 

The right end point will always be an upper bound, the left end point will never be an upper 

bound, that is exactly how this was constructed, ok. Please check that. Once you have that the 

left endpoint cannot be an upper bound, the same picture with the slightly different 

orientation will finish the proof. 

We have , again we have  here and we know that this  has been chosen so large that 

the size of  which is same as  , which means that  has to be to the left 

of , again this is the same logic, this completes the proof, this completes the proof.

We have shown that this  has both properties of a supremum, it is both an upper bound and 

it is also the least upper bound. So, we have shown that nested intervals property plus 

Archimedean property actually implies completeness. Now, why is this very crucial because 

if you carefully look at the proof, we had used nothing basically to show that you can 

approximate the least upper bound in the first step, we just shows one point in the set and 

chose one upper bound, we know that this least upper bound if you take this is has got to be 

there.

Then in the second step we again chose a better, better in the sense that the length of the 

interval is becoming half, better approximation. The crucial point is the Archimedean 

property shows that these approximations get better and better and better. 

In other words what is really crucial in this proof apart from the nested intervals property is 

the fact that , the quantity  can actually be made as small as possible. In just a few modules 

down the line, as part of next week’s chapter on sequences, you will see that the 

Archimedean property actually implies that  converges to 0. Do not worry if you do not 

know what converges means, it will be made clear in the next chapter.

So, the Archimedean property makes  close to 0 and it is the Archimedean property that in 

fact says that as you keep increasing this n, the approximations become better and better and 

better. So, the way we have used these in tandem is to use the nested intervals property to 

produce the least upper bound, but you can apply the nested intervals property in the first 



place to get a unique point solely because the Archimedean property allows you to keep 

improving the approximations.

So, this hopefully clarifies the remark towards the end of the last module that we need both, 

the nested intervals property as well as the Archimedean property to ensure that there are no 

holes. So, essentially the Archimedean property is used to surround the hole by really close 

approximations. You will always be able to approximate a hole just with the nested intervals 

property. nowhere do I actually use the Archimedean property to construct these ’s, but the 

fact that they sort of 0 in on the hole is made precise by the Archimedean property.

So, I hope this theorem, even though it is not really going to play any role in this particular 

course, clarifies completeness to a reasonable extent. Now, what have we done? We have 

shown that a complete ordered field has no holes. But several questions remain. Our aim was 

to produce an appropriate ordered field that models the real line. Question is, is there at least 

one complete ordered field? Right, all these theories will be a waste if there is no complete 

ordered field, second is there a unique one is there a unique one ok. The answer to both 

questions is the following theorem which I will not prove.
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 Let me, after stating the theorem, illustrate why I would not prove this theorem. There is one 

and only one complete ordered field which we call the real numbers, real numbers  ok. 

When I say one and only I must be precise up to isomorphism, I will not make precise what 



isomorphism is. If you have taken a course on linear algebra or abstract algebra probably it is 

clear to you what this isomorphism means.

So, there is essentially only one complete ordered field which we are going to call the real 

numbers ok. Now, why am I not going to prove this theorem because the proof is really long. 

In fact, if you want to write a complete proof of this it will take a small textbook, indeed there 

are many, the notes refers to my favorite one that gives the complete proof and it really does 

not clarify anything that is needed for later analysis. This is one of those theorems that needs 

to be proved for the theory to have any validity. If there is no complete ordered field the 

whole theory is nonsense. So, you need to prove this theorem, but the details of the proof are 

fairly boring that there is no point in engaging in this activity right now.

Moreover, once you take an abstract course on metric spaces you will be able to show this in 

a much easier manner. So, I am not going to bother proving this now, I am going to leave this 

proof to you. If you are interested you can look at the references in the notes ok. One final 

point to address. We have produced the complete ordered field it certainly does not have any 

holes, but our aim at nothing to do with completeness or ordered fields or anything right at 

the beginning, all we wanted was we had this real line, when you put the rational numbers in 

the real line there are holes, we want to plug these holes right?. Whether the final structure 

that plugs these holes is an ordered field or a complete ordered field or it is a topological 

space or it is a Donkey is completely irrelevant to us, we want to somehow fill all these holes.

Now, we have filled all these holes, but how do you know that what you got in the end, the 

real numbers has anything to do with the line that you started off with. We have done, in fact, 

I have said that the construction is long and hard and I am even skipping the construction. 

Why should we have the real numbers that satisfy all these axioms, why is it not a plane or a 

sphere or some other complicated object, why is this exactly the real line. Well that is 

something that I do not want to get into. Again please check the note for references. 

To show that the real numbers correspond to the real line, I mean I should not really be using 

the real line at all, because I am assuming what I want to show as write implicitly in my 

language itself, to show that the real numbers model a straight line the first step to understand 

what a straight line is precisely so that you can show that both are same ok.



Now, it turns out the correct way to do this is to axiomatize Euclidean geometry. Here we go 

again. I will not bore you with another set of lectures with axiomatization. So, do not worry. 

So, you will have to model the Euclidean geometry that you have studied in school via 

axioms. It will turn out under a particular axiomatization which makes perfect intuitive sense, 

the real numbers do correspond to points of a straight line. For more details please check the 

notes for references. This is a course on real analysis and this is the module titled NIP plus 

AP implies Completeness.


