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We now come to the crucial property that the real numbers possess, that rational numbers do 

not. First of all, note that our axioms so far do not preclude the possibility of holes, do not 

seem to get rid of the holes. So far the field axioms and the order axioms very much allow ; 

 is an ordered field. The only thing we have seen is that every ordered field also contains a 

copy of .

Now, the question arises what is the crucial property that  is lacking that makes the 

appearance of these holes? What we need is the axiom of completeness. This axiom of 

completeness plugs all the holes as we shall see. Now, this is the central point of real 

analysis. What I am about to do now is what is the key that allows us to define limits and 

continuity and so on in a satisfactory manner.

Because of the central nature of this axiom, we shall present multiple versions of it. We shall 

spend some time on this and even in a later chapter on sequence and series we will visit this 

yet again. So, the most common way to state the axiom of completeness is through the least 



upper bound property. I would not say this is the simplest way to do it, but this is the most 

common way and to do that we need some definitions.

Definition, this is the definition of bounded above. Let  be an ordered field and  ok. 

We say that  is bounded above if there is some   such that for all , . So, 

there is some element in the field that dominates every single element from the set . In that 

event we say that the set  is bounded above.
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Now, the crucial definition is of least upper bound and completeness which is, as I have 

emphasized several times already in the short span, the central point the central key axiom 

that makes analysis possible. Again, let  be an ordered field and , ok. Assume that  

is bounded above; assume that  is bounded above.

A least upper bound or supremum of , this is usually denoted this is denoted , is an 

element, is an element . Note, the element  must come from . So, let me just not use 

, let me just use  for upper. It is an element  such that property (i),  is an upper bound 

upper bound for .
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Well, that seemingly straightforward because we are trying to define what a least upper 

bound is the very least it can be is that it is an upper bound.

Property (ii) is the crucial property. What it says this is, if  is any upper bound for , then 

. In other words, this  is the least upper bound as the definition was trying to tell. We 

say that  is complete if every set that is bounded above has a supremum or least upper 

bound.  That is a long definition.

Let us see some examples to clarify what is going on. Examples; consider the set 

. Consider this set. Is this set bounded above? Yes, this set is bounded above. 

What is a good upper bound for this set? 1 is an upper bound. Note, I have not told you where 

this set is. So, let me just take it as a subset of . In fact, 1 will be the least upper bound of 

this set. Why is that the case?
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Well, suppose   is any upper bound,  simply because 1 is present in this set. For this 

reason, the property, the second property, if  is any upper bound for , then  is trivially 

satisfied. So, supremum, if you call this set , .

Let us see another example. It is a slight variant of this example. I define  to be, instead of 

so on, I will define it as . This is just 

, ok. It is a collection of all numbers. Again, I will take this as a 

subset of . It is a collection of all numbers  so on. I mean essentially .

Now, what is an upper bound for this set and does it really have a least upper bound? Well, 

let us see that. Notice that  is an upper bound, that is clear because all elements are of the 

form . Claim is that 1 is actually the supremum; 1 is actually the supremum.

Now, let us try to argue as follows. Suppose   and  is an upper bound for the set , ok. If 

, we need to reach a contradiction, if , then .
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In fact, we can assume that this ; because  has got to be an upper bound. So, you have 

 and , we have to reach a contradiction somehow.

Now, I will use one fact that I leave it to you to check. There is  such that , 

ok. This is in fact known as the Archimedean property of the rational numbers. It is a 

consequence of the Archimedean property. We will see that in a few modules. However, to 

prove this is not at all hard for the rational number, so I urge you to try it right now.

So, check that you can find  such that , ok. Therefore, 

. So, we have an element, this is an element in the set  that is 

greater than . So,  cannot be an upper bound;  cannot be an upper bound. So, this proves 

that 1 is the least upper bound of the set .

So, that is enough for the examples right now. Before we proceed with some more theorems I 

want to first make some remarks about infimum, rather I will just put it as an exercise for you 

to think about. Define lower bound in an ordered field and greatest lower bound. This is also 

called the infimum and that is denoted .
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So, define lower bound and greatest lower bound in an ordered field. Show that an ordered 

field is complete if and only if any set that is bounded below has a greatest lower bound. So, 

do this exercise, you will have to define what lower bound is, you have to define what 

bounded below is, you will have to define what infimum is. You show that completeness is 

the same. You can reformulate completeness in terms of lower bounds instead of upper 

bounds.

Now, the definition of completeness seems very hard. It says that a field is complete if every 

set that is bounded above as a supremum or every set that is bounded below as an infimum. 

The reason is that any definition in mathematics that was arrived at after many years of work 

has this tendency to be a bit opaque because the distance between what motivated the impetus 

for studying a proper for figuring out a proper definition and the final definition coming 

about is many many years, because of that it is not really clear what is happening.

So, what we will do is we will now prove two more intuitive properties that complete ordered 

fields will possess called the Archimedean property and the nested intervals property. These 

two properties are more intuitive from our understanding of what a straight lines behavior is 

supposed to be. Before we get to these two results, let us first see a useful characterization of 

the supremum that will be of immense benefit to us in these proofs.
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Proposition, this is characterization of the supremum. This result says the following. Let  be 

an ordered field ordered field,    bounded above, let . Then for each , 

, we can find an element  such that .

Conversely, assume that  is an upper bound for  that satisfies , then . So, this 

gives a complete characterization of the supremum. What this proposition says is the 

following. You have a set  in an ordered field that is bounded above. The supremum also 

exists which we are denoting by . What it says is if you knock out a small portion of the 

supremum that is essentially what subtracting by a positive  means then that ceases to be an 

upper bound of the set. There will be some element  with  .

Needless to say, this choice of this element  depends on the choice of . If you choose a 

much smaller  you will have to modify this element  in all probability ok.
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 Proof, the proof is a proof by contradiction. We had already seen one or two proofs by 

contradiction, specifically the irrationality of . The essential idea is that we will assume 

that what we are trying to prove is false and add it to the list of hypotheses that we have. 

Then we can play around with the given hypothesis along with our new assumption and reach 

a contradiction, then by the law of excluded middle our assumption must be false.

This technique is really powerful especially when we do not know how to start a proof. You 

have a theorem you do not know how to prove it. Just add the negation of what you want to 

prove as a hypothesis, as an assumption and proceed.

So, first we will prove the first part not the converse. Assume that for some choice of , 

 is false. Then, we have  for all , right?. Our  says we can find some 

element  that satisfies the inequality,  , the negation of this statement is that 

for some choice of  and all choices of ,  . Check that this is the correct 

negation.

But, , why? because  is positive; because  is positive , which 

contradicts property (ii) of the supremum. You cannot have an upper bound,  is going to 

be an upper bound, you cannot have an upper bound that is strictly smaller than the least 

upper bound.

So, this contradiction shows that the supremum will necessarily have property . On the 

other hand, suppose set  is bounded above and  is an upper bound that satisfies . Then 

we have to show , ok.
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How does one show this? well, let  be any upper bound for the set . Now, suppose , 

then set ,, set this to be . Then  because . Now, because of the property 

, we are now assuming that  is satisfied, we definitely have, we can find   such that 

. This is simply property .

But, . In other words , ok. So,  cannot be an upper 

bound; cannot be an upper bound. Hence we must have . So, this completes the 

proof.

Now, what we will do is we will proceed and prove the nested intervals theorem and the 

Archimedean property in the next module. This is the course on Real Analysis and you have 

just watched the module on Completeness.


