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We now give the proof of the Approximation Theorem. So, what we will do is, we will first 

make a reduction that should have been clear to the reader once during our discussion of the 

Bernstein polynomials. 

So, exercise, show that it suffices to prove the approximation theorem for the interval [a, b] 

being nothing, but close [0, 1] ok. So, you do not need to establish it for an arbitrary interval, 

you can consider the special case close interval [0,1] and that is enough ok. 

So, once this exercise is done, we will focus on close [0,1] and we will use the Bernstein 

polynomials ok. So, central claim is that these 𝐵𝑛(𝑓)′𝑠 converge to 𝑓 uniformly on close [0,1]; 

that is what we have to show ok. 

So now, to do this as I had mentioned before we are going to analyze points in two, I mean two 

separate set of points. What we are going to do is we are going to analyze, we will analyze 

points that are close to 
𝑘

𝑛
 and points that are far away; that is somewhat vague remark, but that 

is what we are going to do. 
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So, let us begin the proof. So, fix 𝑥 ∈ [0,1] and 0 < δ < 1 ok. Now, we want to analyze the 

∑ 𝐵𝑘,𝑛(𝑥)𝑓 (
𝑘

𝑛
)𝑛

𝑘=0 . This is what 𝐵𝑛(𝑓)’s ok. 

So, to analyze this what we will do is, we will just focus on the sum of the Bernstein 

polynomials. First, what we will do is we will consider ∑ 𝐵𝑘,𝑛(𝑥)
|
𝑘

𝑛
 − 𝑥 | ≥δ

  ok. 

So, note we have fixed the 𝑥, we want to analyze ∑ 𝐵𝑘,𝑛(𝑥)𝑓 (
𝑘

𝑛
)𝑛

𝑘=0 . What we are going to 

first do is we are going to consider the sum 𝐵𝑘,𝑛(𝑥) where 
𝑘

𝑛
 is far away from 𝑥 ok. Note 𝑥 is 

fixed ok. Now this is certainly of course, I am using a shortcut here by this is to denote that we 

are only summing up over those case for which |
𝑘

𝑛
 −  𝑥 |  ≥ δ. 

Now, this is of course, ∑ 𝐵𝑘,𝑛(𝑥)𝑓 (
𝑘

𝑛
)

|
𝑘

𝑛
 − 𝑥 | ≥δ

≤ ∑
1

δ2 (
𝑘

𝑛
− 𝑥)

2

|
𝑘

𝑛
 − 𝑥 | ≥δ

𝐵𝑘,𝑛(𝑥) ok. So, what 

we have essentially done is we have multiplied by (
𝑘

𝑛
– 𝑥)

2

≥ δ2 and we are dividing by δ2. 

So, in essence we are multiplying each term 𝐵𝑘,𝑛(𝑥) by a quantity that is greater than or equal 

to 1. So, this is certainly going to be less than or equal to ok. 
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So, now we have to estimate. So, this is a trick. So, this is essentially just the trick. So, now, 

we want to estimate summation ∑ (
𝑘

𝑛
− 𝑥)

2

𝐵𝑘,𝑛(𝑥) ok; this is what we have to do. So, look 

at ∑ (k − 𝑛𝑥)2
𝑘=0 𝐵𝑘,𝑛(𝑥), look at this quantity instead ok. 

Now, from one of the identities involving the Bernstein polynomials that was left as an exercise 

to you last time, we can simplify this in a not one by using those properties we can greatly 

simplify this. What happens is this is, nothing but ∑ (𝑘(𝑘 − 1) − (2𝑛𝑥 − 1)𝑘 +𝑛
𝑘=0

𝑛2𝑥2)𝐵𝑘,𝑛(𝑥), ok. 

This whole thing times 𝐵𝑘,𝑛(𝑥)  ok. So, please check this; please check that you get 

(𝑘(𝑘 − 1) − (2𝑛𝑥 − 1)𝑘 + 𝑛2𝑥2)𝐵𝑘,𝑛(𝑥)  ; once you expand this out.  
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And this by the various identity is that we have established involving the Bernstein polynomials 

this is nothing, but 𝑛(𝑛 − 1)𝑥2 − (2𝑛𝑥 − 1)𝑛𝑥 + 𝑛2𝑥2 fine. 

So, you can check that this is nothing, but 𝑛𝑥(1 − 𝑥) , once you do this a basic arithmetic. And, 

this is going to be less than or equal to 
1

4
𝑛. How did we get this last step? That seems a bit 

weird, well the last step involves this basic property that 𝑥(1 − 𝑥) ≤
1

4
 when 𝑥 ∈ [0,1].  

Do you know why this is true? Can you prove this? You can use calculus to prove it, you can 

also prove it by elementary observations. I urge you to try it in two different ways; one using 

calculus and one using just elementary basic stuff ok. 

So, now, that we have this equation that 𝑛𝑥(1 − 𝑥) ≤
1

4
𝑛. Ultimately what we have is the term 

we started out with; ∑ (
𝑘

𝑛
− 𝑥)

2

𝐵𝑘,𝑛(𝑥) ≤
1

4
𝑛; what we do is we divide both sides.  
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As expected we divide both sides of left extreme and right extreme by 𝑛2 ok. Once we do that 

we get ∑ (
𝑘

𝑛
− 𝑥)

2

𝑘=0 𝐵𝑘,𝑛(𝑥) ≤
1

4𝑛
 ok. 

So, what have we managed to achieve? Well, what we have done is we fixed δ and we managed 

to show that if (
𝑘

𝑛
– 𝑥)

2

≥ δ2 ; in other words | (
𝑘

𝑛
– 𝑥) | ≥ δ. Then, this ∑ (

𝑘

𝑛
−𝑘=0

𝑥)
2

𝐵𝑘,𝑛(𝑥) ≤
1

4𝑛
. 
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Now, what are we going to do with this? Well, we know that 𝑓 is going to be bounded. Why? 

Because, it is a continuous function on a closed interval; so, 𝑓 is going to be bounded. Suppose, 



|𝑓(𝑥)| ≤ 𝑀 for all 𝑥 ∈ [0,1] ok. So, choose a sort of an upper bound for this function capital 

𝑀. Then what the final quantity we are really interested in is |𝑓(𝑥)– 𝐵𝑛(𝑓)(𝑥)|. 

This is what we are interested in; this is going to be nothing, but |𝑓(𝑥) −

∑ 𝑓 (
𝑘

𝑛
) 𝐵𝑘,𝑛(𝑥)

|
𝑘

𝑛
 − 𝑥 | ≥δ

|. So, I should not really write equal to, I should write we have first 

analyzing those terms; we are analyzing those terms for which |
𝑘

𝑛
 −  𝑥 |  ≥ δ. So, we are 

essentially analyzing the paths where |
𝑘

𝑛
 −  𝑥 |  ≥ δ separately. 

So, |𝑓(𝑥) − ∑ 𝑓 (
𝑘

𝑛
) 𝐵𝑘,𝑛(𝑥)

|
𝑘

𝑛
 − 𝑥 | ≥δ

|  ≤  ∑ |𝑓(𝑥)  − 𝑓 (
𝑘

𝑛
) 𝐵𝑘,𝑛(𝑥)

|
𝑘

𝑛
 − 𝑥 | ≥δ

| ok. Now, how 

did we pull this trick? How did we pull this trick? Well, we pulled this trick because summation 

∑ 𝐵𝑘,𝑛(𝑥) = 1. This we already know. 
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So, what we have essentially done to establish this from the previous step is this 𝑓(𝑥), we have 

written as 𝑓(𝑥) ∑ 𝐵𝑘,𝑛(𝑥). And we have taken this 𝑓(𝑥) inside so, we have written this as 

∑ 𝑓(𝑥)𝐵𝑘,𝑛(𝑥). So, this is what we did to the first term, this is what we did to the first term ok. 

From that this should become apparent how we got |𝑓(𝑥)– 𝑓 (
𝑘

𝑛
)| 𝐵𝑘,𝑛(𝑥)ok. 



Now, combined with what we have established regarding ∑ (
𝑘

𝑛
− 𝑥)

2

𝑘=0 𝐵𝑘,𝑛(𝑥) ≤
1

4
𝑛 and 

combining that, what we get is this quantity. This quantity is going to be less than 
2𝑀

4δ2𝑛
 which 

is nothing, but 
𝑀

2δ2𝑛
, ok. So, kindly check this, kindly check ok. 
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So, what we have now established is that, when 𝑥 is far away from 
𝑘

𝑛
, then 𝑓(𝑥) and 𝐵𝑛(𝑓)(𝑥) 

are close right. All we have to do to make  𝐵𝑛(𝑓) close to 𝑓(𝑥), now is to make this small 𝑛 

large. If you make small 𝑛 large then we will get that 𝐵 and 𝑓(𝑥) are very close to each other.  

Now, we have to deal with those points for which 𝑥 is close to 
𝑘

𝑛
} ok. So, what we have 

essentially done is, we are splitting the ∑ 𝐵𝑘 and 𝑓(𝑥) into two parts; those where which 
𝑘

𝑛
 is 

close to 𝑥 and those where 
𝑘

𝑛
 is far away from x. 

So, what we do is, fix ε > 0 and now we are going to choose δ appropriately to get what we 

need and choose δ >  0 such that, if 𝑦, 𝑧 ∈ [0,1] with |𝑦 − 𝑧| < δ. Then |𝑓(𝑦) − 𝑓(𝑧)| < ε. 

We can do this because, 𝑓 is uniformly continuous; because 𝑓 is uniformly continuous, I can 

find a δ that works universally for all points 𝑦, 𝑧 ∈ [0,1]. Note that this second path analyzing 

where, 𝑥 is close to 
𝑘

𝑛
 we will not really require any of the properties of the Bernstein 

polynomials; just the fact that 𝑓 is uniformly continuous is enough to finish the proof ok. 
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So, now we need to again analyze |𝑓(𝑥) − ∑ 𝑓 (
𝑘

𝑛
) 𝐵𝑘,𝑛(𝑥)

|
𝑘

𝑛
−𝑥|<δ

| ≤ 

∑ |𝑓(𝑥)– 𝑓 (
𝑘

𝑛
)| 𝐵𝑘,𝑛(𝑥)

|
𝑘

𝑛
−𝑥|<δ

 

By the exact same argument that I had highlighted; when we had a similar equality, I mean 

inequality in the previous part ok. But, we are summing up over those 
𝑘

𝑛
  where, |

𝑘

𝑛
− 𝑥| < δ. 

And, by uniform continuity this is just going to be less than ε ⋅ 1 ok, which is ε ok. 
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So, now what we do is we choose. So, we have to combine both parts. We choose δ so, that so, 

that this equation is satisfied. So, that star is satisfied, that is those points where 
𝑘

𝑛
 is close to δ 

can be δ with. 

Now, for this choice of δ, we choose 𝑛 so large that 
𝑀

2δ2𝑛
 which was nothing, but the quantity 

that we got when we analyze the previous term is also less than ε is also less than ε. Net up 

short is we will get that |𝐵𝑛(𝑓)(𝑥) − 𝑓(𝑥)| < 2ε for all 𝑥 ∈  [0,1] ok. 

This will be true when 𝑛 is suitably large; 𝑛 is suitably large and this concludes the proof. So, 

the proof of the Weierstrass approximation theorem that we have given ultimately relies on the 

uniform continuity of the function 𝑓 and the basic properties of the Bernstein polynomials.  

We analyze those points 𝑥 which are close to some 
𝑘

𝑛
  and for analyzing this just uniform 

continuity is enough. For those points for which 
𝑘

𝑛
 is somewhat far away, we just use the basic 

properties of the Bernstein polynomials and combining both we get the proof. 

This is a course on Real Analysis and you have just watched the module on the Proof of the 

Weierstrass Approximation Theorem. 


