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Recall the series ∑
1

𝑛𝑝
∞
𝑛=1   diverges, if 𝑝 ≤ 1 and converges if 𝑝 >  1. Now, observe this 

function 
1

𝑛𝑝, I can consider it as 
1

𝑥𝑝 and the function is now defined on [1, ∞)  ok. I can extend 

1

𝑛𝑝
, to the whole real numbers in [1, ∞) .  

Now, it is natural to study whether by using this function 
1

𝑥𝑝
, whether we can conclude 

something about the series∑
1

𝑛𝑝
∞
𝑛=1    and that is precisely what the integral test tries to tell us. It 

sort of says that the sum of the series is related to the area of this extended function between 𝑛 

and 𝑛 + 1 ok. 
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So, these vague remarks will now be made precise in this theorem. This is the integral test and 

this is a very powerful general test for convergence. Let 𝑓 be a continuous function, continuous 

function defined on (0, ∞)   ok.  

further assume, that f is positive and decreasing ok. Then, ∑ 𝑓(𝑛) converges if and only if 

lim
𝑛→∞

∫ 𝑓
𝑛

1
 exists or in other words, the series ∑ 𝑓(𝑛) converges if and only if the improper 

integral exists and I must add to be precise and is finite.  

Remember, when we defined the improper integral, we did allow the possibility that the 

integral could be ±∞. We do not want that. That is obvious. Let us see a proof and my vague 

remarks about the area between 𝑛 and 𝑛 + 1 and the value of the series being related will 

become clear in the proof ok. So, proof; set 𝑎𝑛 =   𝑓(𝑛) and set 𝑏𝑛 = ∫ 𝑓(𝑛)
𝑛+1

𝑛
 ok. 
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Now, we are assuming that 𝑓 is decreasing which just means that 𝑓(𝑛 + 1) ≤ 𝑓(𝑛), that is 

what decreasing will imply ok. Also, it actually says that if 𝑥 ∈ [𝑛, 𝑛 + 1], then 𝑓(𝑛 + 1) ≤

𝑓(𝑥) ≤ 𝑓(𝑛), right, that is what decreasing means ok.  

In other words, if I integrate from n to n+1, this is set of inequalities, what I would get is 

𝑓(𝑛 + 1) ≤ ∫ 𝑓(𝑥)
𝑛+1

𝑛
≤ 𝑓(𝑛) , Obviously, integrating the entire equation from n to n+1 that 

just means that the area of the function or area of the region under the graph of the function 

from n to n+1 is dominated by 𝑓(1) and it dominates 𝑓(𝑛); sorry is dominated by 𝑓(𝑛) and 

dominates 𝑓(𝑛 + 1), ok.  

Now, what I can do with this is translate it in terms of 𝑎𝑛’𝑠 and 𝑏𝑛’𝑠. So, what we get is 0 <

𝑎𝑛+1 ≤ 𝑏𝑛 ≤ 𝑎𝑛, ok. So, 𝑏𝑛 is sandwiched in between 𝑎𝑛+1 and 𝑎𝑛 ok. Now, a simple 

application of the comparison test, you have to apply it twice, once for each inequality 𝑎𝑛+1  ≤ 

𝑏𝑛 and 𝑏𝑛 ≤ 𝑎𝑛. 
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We get ∑ 𝑎𝑛 converges if and only if, ∑ 𝑏𝑛 converges. This just follows immediately if you 

apply the comparison test twice to the inequality that we have ok. But what are ∑ 𝑏𝑛? ∑ 𝑏𝑛 is 

nothing but ∫ 𝑓
𝑛

1
 right. Summation not summation 𝑏𝑛; the summation n = 1 or rather let me be 

a 100 precise.  
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∑ 𝑏𝑘
𝑛
𝑘=1 = ∫ 𝑓

𝑛

1
, which means ∑ 𝑏𝑘 converges if and only if, ∫ 𝑓

𝑛

1
 exists and is finite. In other 

words, the convergence of the series ∑ 𝑎𝑛 is determined by whether the improper integral ∫ 𝑓
∞

1
 



converges or diverges. So, the proof is rather simple and uses the simple idea that the graph, 

the area under the graph is related to the terms of the series. Now, using the integral test, we 

can easily show that ∑
1

𝑛𝑝
∞
𝑛=1  does converge if p>1. 
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Let us see how this is done. So, example; consider ∑
1

𝑛𝑝
∞
𝑛=1 . Now, choose 𝑓(𝑥) =

1

𝑥𝑝. Let us 

first take 𝑝 >  1 and see what happens. Then, ∫
1

𝑥𝑝

𝑛

1
=

1

1−𝑝
(𝑛1−𝑝 − 1) ok. In fact, for this, we 

do not need to assume 𝑝 greater than 1. 
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We just need to assume that 𝑝 ≠ 1; when 𝑝 =  1, what I have written is not correct, ∫
1

𝑥
= log 𝑥 

and not the formula that I have written. Now, as n approaches infinity the above quantity, the 

above quantity is finite, if 𝑝 >  1; and infinite if 𝑝 <  1 ok. That immediately gives that when 

𝑝 > 1, the series converges by the integral test and when 𝑝 <  1, we immediately get that the 

series diverges.  

Of course, for the 𝑝 = 1 case, we have to do a special argument which we have already done 

in an earlier chapter to show that the series ∑
1

𝑛
. So, we were able to show that ∑

1

𝑛𝑝
∞
𝑛=1  except 

the 𝑝 = 1 case, whether it converges or diverges, we were able to show it pretty easily using 

the integral test ok. So, can you show using the integral test that ∑
1

𝑛
  diverges? Yes, you can 

and that is going to be left as an exercise.  

Use integral test integral test to deal with ∑
1

𝑛
  also. So, this concludes this module. This is a 

course on real analysis, and you have just watched the module on the integral test.  


