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In this module, we are going to define the Number π using the trigonometric functions and 

calculus. So, we already know that 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1 :this immediately gives us the 

following inequalities −1 ≤ 𝑠𝑖𝑛𝑥 ≤ 1 and −1 ≤ 𝑐𝑜𝑠𝑥 ≤ 1.  

Now, we already know from our familiarity with the trigonometric functions that, all values in 

between minus 1 and 1 are indeed taken by both sin and cos, but we have not yet proved that 

rigorously. 

So, first let us try to prove that there is a point 𝑥 ∈ 𝑅, such that 𝑠𝑖𝑛 𝑥 =  1. Equivalently 

because 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1, we must have 𝑐𝑜𝑠 𝑥 =  0. Both are equivalent 𝑠𝑖𝑛 𝑥 =  1 if and 

only if 𝑐𝑜𝑠 𝑥 equal, this is not exactly 𝑠𝑖𝑛 𝑥 could be -1. So, if 𝑠𝑖𝑛 𝑥 = 1, you have 𝑐𝑜𝑠 𝑥 =

 0 ok. This side implication at least we have. 
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Now, first of all observe that, derivative of 𝑠𝑖𝑛𝑥|𝑥=0 = 1. And we also know that 𝑠𝑖𝑛 0 =  0; 

because the derivative of 𝑠𝑖𝑛 is 𝑐𝑜𝑠 and 𝑐𝑜𝑠 is a continuous function. The derivative of 𝑠𝑖𝑛  is 

certainly positive when 𝑥 is near 0. 

Because the derivative at 0 is 1 and the derivative is 𝑐𝑜𝑠 𝑥 which is a continuous function; the 

derivative is positive when 𝑥 is near 0, which means 𝑠𝑖𝑛 is increasing in the vicinity of 0, ok. 

So, 𝑠𝑖𝑛 is going to be an increasing function near 0. This means 𝑠𝑖𝑛 𝑥 >  0 when 𝑥 >  0 and 

𝑥 is close to 0, right. 

Because 𝑠𝑖𝑛 0 =  0, because of that 𝑠𝑖𝑛 will be increasing and therefore, 𝑠𝑖𝑛 𝑥 will be positive, 

ok. Now, suppose for all 𝑥 ∈ 𝑅 ,  𝑐𝑜𝑠 𝑥 ≠ 0. We also know that 𝑐𝑜𝑠 0 =  1 and 𝑐𝑜𝑠 𝑥 ≠ 0 

and 𝑐𝑜𝑠 is continuous; putting all this together by intermediate value property of 𝑐𝑜𝑠. It must 

be the case that 𝑐𝑜𝑠 𝑥 >  0 for all 𝑥 ∈ 𝑅, right. 
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So, what does this tell us? This tells us that 
𝑑

𝑑𝑥
𝑠𝑖𝑛𝑥 > 0 for all 𝑥 ∈ 𝑅, which just means 𝑠𝑖𝑛 𝑥 

is a strictly increasing function on the whole of R; not just near the vicinity of 0, 𝑠𝑖𝑛 𝑥 is a 

strictly increasing function for all 𝑥 ∈ 𝑅, ok. Now, we are going to manipulate 𝑠𝑖𝑛 and 𝑐𝑜𝑠 

using these trigonometric identities that we have established in the last module to derive what 

we need, ok. 

So, fix 𝑎 > 0. We know that because 𝑐𝑜𝑠 is positive, 0 <   𝑐𝑜𝑠 2𝑎; because we have just under 

the assumption that 𝑐𝑜𝑠 is never 0, 𝑐𝑜𝑠 is always positive, so 0 <   𝑐𝑜𝑠 2𝑎. But from the 

trigonometric identities that we saw last time; 𝑐𝑜𝑠2𝑎 = 𝑐𝑜𝑠2𝑎– 𝑠𝑖𝑛2𝑎, ok. 

Now, because 𝑠𝑖𝑛 is strictly increasing for all 𝑥 >  0 , 𝑐𝑜𝑠 must be strictly decreasing for all 

𝑥 >  0. Because 𝑠𝑖𝑛2𝑥 + 𝑐𝑜𝑠2𝑥 = 1, keep that in mind for the moment. We have also seen 

that if 𝑎 >  0, 𝑠𝑖𝑛2𝑎 must be positive; simply because 𝑠𝑖𝑛 is strictly increasing whenever, in 

fact it is strictly increasing throughout R and 𝑠𝑖𝑛 0 =  0. So, 𝑠𝑖𝑛2𝑎 is going to be a positive 

quantity. 

And because 𝑠𝑖𝑛2𝑎 is positive, this will be strictly greater than 𝑐𝑜𝑠2𝑎. Note I am using the fact 

that 𝑠𝑖𝑛 𝑎 ≠  0 when 𝑎 > 0; because 𝑠𝑖𝑛 is a strictly increasing function and 𝑠𝑖𝑛 0 = 0 ok. 

Sorry, this will be less than 𝑐𝑜𝑠𝑎, sorry I completely reverse the inequality that I need, ok. 

Now, inductively we can show that 𝑐𝑜𝑠(2𝑛𝑎) < 𝑐𝑜𝑠(𝑎)2𝑛
. And this will be true for all 𝑛 in the 

natural numbers; just inductively apply the argument that we have given now, ok. This means 



as 𝑛 goes to infinity, 𝑐𝑜𝑠(2𝑛𝑎) converges to 0, ok. This happens because, we already know 

that 𝑐𝑜𝑠(𝑎) < 1. 

Why do we know that 𝑐𝑜𝑠(𝑎) < 1 when 𝑎 >  0? Because 𝑠𝑖𝑛 is an increasing function, 

𝑠𝑖𝑛(𝑎)will be nonzero and positive; so 𝑐𝑜𝑠(𝑎) cannot be 1 , ok. So, 𝑐𝑜𝑠(2𝑛𝑎) approaches 0, 

ok. 
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Now, because 𝑠𝑖𝑛 is strictly increasing, because sin is strictly increasing; 𝑐𝑜𝑠 is strictly 

decreasing. We can use the fact that 𝑐𝑜𝑠(2𝑛𝑎) goes to 0 to conclude that lim
𝑥→∞

𝑐𝑜𝑠𝑥 = 0, ok. 

Justify this is fairly easy, because the key step is the fact that cos is strictly decreasing, ok. 

Now, because lim
𝑥→∞

𝑐𝑜𝑠𝑥 = 0; we can find some 𝑏 > 0, such that 𝑐𝑜𝑠𝑏 <
1

4
 , ok. And, it is clear 

that, whenever 𝑐𝑜𝑠𝑏 <
1

4
, 𝑠𝑖𝑛𝑏 >

1

2
. In fact, you can get a better bound, but that is all I need; 

𝑠𝑖𝑛 𝑏 is definitely going to be greater than half, ok. How does this help us? Well, again you 

apply the identity 𝑐𝑜𝑠2𝑏 = 𝑐𝑜𝑠2𝑏 − 𝑠𝑖𝑛2𝑏. 

But 𝑐𝑜𝑠2𝑏 − 𝑠𝑖𝑛2𝑏 when you substitute 
1

4
  and 

1

2
, this will be less than 0. But 𝑐𝑜𝑠 > 0 for all 

𝑥; that is how we started. This is a contradiction, ok. 
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Hence our assumption is wrong; we can find 𝑥0 ∈ 𝑅 such that, 𝑐𝑜𝑠(𝑥0) = 0, ok. Now, what 

we are going to do now with this is, we can define π the following way. Let 𝑆 be the set of all 

𝑦 ∈ 𝑅, such that 𝑐𝑜𝑠 𝑦 =  0, ok. In fact, all 𝑦 >  0, such that 𝑐𝑜𝑠 𝑦 =  0.  
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In fact, we can find 𝑥0 > 0, such that this is satisfied. such that 𝑐𝑜𝑠(𝑥0) = 0, ok. Now, what 

we are going to do is take 𝑐 = inf 𝑆, ok.  



By continuity, 𝑐𝑜𝑠 𝑐 =  0 ok. And 𝑐 >  0; because we know that 𝑐𝑜𝑠 0 =  1, because of that 

𝑐 >  0. What we do is; we define 𝑐 or rather π, we define π to be the quantity by definition as 

π =  2𝑐. So, essentially what we have found out, this 𝑐 =
π

2
, which we are familiar with. 
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And by the way we have defined things, 𝑐𝑜𝑠 >  0, if 0 ≤ 𝑥 <
𝑝𝑖

2
; that is simply the way 𝑐 has 

been defined, ok. And because of this  𝑠𝑖𝑛 𝑥 will be 0 ≤ 𝑠𝑖𝑛 𝑥 <   1, if 0 ≤ 𝑥 <
𝑝𝑖

2
. And we 

also know that 𝑠𝑖𝑛 (
π

2
) = 1, ok. 

Now, what we are going to do in the next module; now that we have π, we are going to relate 

π and the trigonometric functions and get various identities such as 𝑠𝑖𝑛(𝑥+ (
π

2
)) = 𝑐𝑜𝑠𝑥 and 

𝑐𝑜𝑠(𝑥+ (
π

2
)) = −𝑠𝑖𝑛𝑥 and so on. And using these relations, we are going to somewhat get an 

approximate graph of the 𝑠𝑖𝑛𝑒 and the 𝑐𝑜𝑠𝑖𝑛𝑒 function.  

This is a course on Real Analysis, and you have just watched the module on the Number π. 


