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The function 𝑒𝑥: 𝑅 ⟶ 𝑅 is smooth and strictly increasing. Its image is (0, ∞) ; we have seen 

all these aspects in the module on the exponential function. Therefore, we can apply the inverse 

function theorem to conclude, that there is an inverse, differentiable inverse. In fact, 𝐶1-inverse. 

from what we have already seen; there is a 𝐶1 inverse, such that or rather 𝐶1 inverse  𝑓: (0, ∞) 

⟶ 𝑅 that is also strictly increasing. Again every single statement that is made in this paragraph, 

can be easily justified using the content that is already been developed. So, I am going to leave 

it to you to check this in its entirety, ok. 
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Moreover, we have that, 𝑓 composed with or rather let me directly compute the derivative, let 

me directly compute the derivative; 𝑓’(𝑦) =
1

𝑒𝑓(𝑦) =
1

𝑦
 , right. The inverse function theorem tells 

you how to compute the derivative of a function also, right. So, the derivative at y of the inverse 

of the exponential function will be nothing but 
1

𝑒𝑓(𝑦), ok. Now, exponential and this function 𝑓 

are nothing, but inverses.  

So, this is nothing but 
1

𝑦
, ok. So, we have got that the derivative of this function 𝑓 is 

1

𝑦
 at the 

point 𝑦 ∈ (0, ∞), ok. We also know that this function 𝑓 must satisfy 𝑓(1) = 0; simply because 

exponential at 0 is 1, ok. 
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Now, we already know that 𝑓 is strictly increasing and it also satisfies this nice identity that  

𝑓(𝑥𝑦) = 𝑓(𝑥) + 𝑓(𝑦). How do you show this? Well, it is very similar to how we showed a 

similar property for exponential that, 𝑒𝑎+𝑏 = 𝑒𝑎𝑒𝑏.  

You can use that to prove this or you can prove this directly by considering the function. So, 

fix 𝑎, this proof is going to be very similar; fix 𝑎 ∈ (0, ∞) and consider the function 𝑔(𝑎𝑥) −

𝑔(𝑥). Consider this new function; differentiate this function. Well, by chain rule, you will just 

get 
1

𝑎𝑥
𝑎 −

1

𝑥
= 0.  
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This just means that 𝑔(𝑎𝑥)– 𝑔(𝑥)  =  𝐶  is just constant, is just some constant. Now, set 𝑥 =; 

we get 𝑔(𝑎)– 𝑔(1) = 0 . So, we get 𝑔(𝑎) = 𝐶  in other words 𝑔(𝑎𝑥) = 𝑔(𝑎) + 𝑔(𝑥). Now, 

again we can just consider 𝑔(𝑎2) and we will get 𝑔(𝑎2) = 2𝑔(𝑎). And similarly by induction, 

we get 𝑔(𝑎𝑛) = 𝑛𝑔(𝑎)., ok. 
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Now, because 𝑔 is strictly increasing, remember I wrote that back, 𝑔 is strictly increasing, for 

a fixed 𝑎 > 1; we note that, star gives 𝑔(𝑎𝑛) as 𝑛 → ∞ diverges to ∞, right.  𝑎𝑛 as you keep 

boosting 𝑎; if 𝑎 >  1, of course 𝑔(𝑎) is not going to be 0, because we know that 𝑔 is strictly 

increasing and the fact that 𝑔(1) = 0.  

So, as 𝑔(𝑎𝑛) = 𝑛𝑔(𝑎), so as 𝑛 goes to infinity, 𝑔(𝑎𝑛) converges to infinity; but 𝑔 is strictly 

increasing, that just means that as 𝑥 goes to infinity, 𝑔(𝑥) converges to infinity, ok. So, this 

function 𝑔 is strictly increasing and it goes to infinity as 𝑥 goes to infinity and at the point 1, it 

is going to be 0, ok. 
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Furthermore, if 𝑥 >  0; then 0 = 𝑔(1) = 𝑔(𝑥) + 𝑔(𝑥−1) right. This is just coming from the 

identity that 𝑔(𝑥𝑦) = 𝑔(𝑥) + 𝑔(𝑦) , right. So, which means 𝑔(𝑥−1) = −𝑔(𝑥); if 𝑥 >  1, then 

this means 𝑔 (
1

𝑥
) = −𝑔(𝑥), which is going to be negative, ok. And since as 𝑥 →  ∞, 

1

𝑥
 →0 and 

𝑔(𝑥) → ∞,  𝑔 (
1

𝑥
)  → −∞; because 𝑔 (

1

𝑥
) = −𝑔(𝑥).  
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So, this function g is nothing but the function 𝑙𝑜𝑔: (0, ∞) ⟶ 𝑅 ok. Now, we have shown 

several properties of the logarithm; but we still do not have enough data to draw its graph, for 



that we need the second derivative. The second derivative of log(𝑦) =
−1

𝑦2
 ; we already know 

this, because the derivative is 
1

𝑦
.  

So, this has got to be when 𝑦 > 0 , 
−1

𝑦2
 <  0; this means, the function  𝑙𝑜𝑔 is concave, ok. It is 

concave, it is not concave sorry; it is not concave, it is convex downwards, it is convex 

downwards, ok. 
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What this means is that, the function essentially looks like this, a familiar picture of the 

logarithm function, ok. So, we have established in record time, all the basic properties of 

logarithm essentially covering years of your school syllabus from middle school in a matter of 

10 to 15 minutes; let us now proceed to something newer.  
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So, if 𝑎 > 0 and 𝑥 is any number; we can now define 𝑎𝑥 to be 𝑒log 𝑎. This is a long pending 

definition, we had made this earlier; but without the existence of the exponential and logarithm 

done in great detail, this definition will not really make sense.  

Now, notice that by the properties of exponential and logarithms, this agrees with the usual 

definition of 𝑎𝑛, when 𝑛 is coming from the integers, ok. So, this is not something entirely 

pulled out of the air; this makes, this is a sensible definition, ok. 

I am going to just prove one property of the logarithms that is really nice. 

 Theorem, let 𝑘 be a positive integer. Then lim
𝑥→∞

(log 𝑥)𝑘

𝑥
= 0. We already know that the 

exponential function goes to infinity faster than any polynomial; we have encountered this 

phenomenon several times in this course.  

This is saying something interesting, take the logarithm, we know that it goes to infinity; boost 

the speed at which it goes to infinity by taking power 𝑘, it still goes to infinity far slower than 

even the linear factor just 𝑥. So, the logarithm function grows really slowly and that is captured 

quantitatively and analytically in this theorem.  
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And the proof is fairly easy because we have already done the hard work with using the 

exponential function. So, what you do is, you set 𝑥 = 𝑒𝑧; in other words 𝑧 = log 𝑥 ok, then 

(log 𝑥)𝑘

𝑥
=

𝑧𝑘

𝑒𝑧.  

Now, when 𝑥 → ∞, , so does 𝑧; but by earlier result limit 𝑧 → ∞ or rather lim
𝑥→∞

𝑧𝑘

𝑒𝑧 = 0 as 

required. 
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Now, there is an easy corollary of this, which I am going to leave it as an exercise; show that 

lim
𝑥→∞

𝑥
1

𝑥 = 1. And recall that we have shown something similar to this for sequences, ok. Now, 

we end with yet another proof of a famous limit formed for the exponential.  

What we do is the following; we know that the function log is differentiable that is how it was 

constructed as an inverse of the exponential function, we essentially created the  𝑙𝑜𝑔 function 

using the inverse function theorem, therefore it is differentiable.  

Therefore, it is differentiable at the point 1; the derivative is given by the limit,  

lim
ℎ→0

log(1+ℎ)−log 1

ℎ
= 1. We know this because the derivative of  𝑙𝑜𝑔 is  

1

𝑥
  or  

1

𝑦
, and 𝑦 in this 

case is 1, ok. 
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Now, log (
1+ℎ

ℎ
) = log(1 + ℎ)

1

ℎ  ok. So, check this. This essentially follows from the basic 

property of the logarithm and the way we have defined, the way we have defined 

exponentiating with respect to a real number, ok. Now, taking logarithms on both sides, 

immediately gives lim
ℎ→0

(1 + ℎ)
1

ℎ = 𝑒 

So, this is yet another way of seeing this famous limit, this famous limit, this is a famous limit, 

ok. So, these are some basic properties of the logarithm functions; there are some more in the 



exercises. This is a course on Real Analysis, and you have just watched the module on the 

Logarithm. 


