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The Inverse function Theorem in several variables is one of the most used results from Real 

Analysis to branches like differential geometry. In this course, we are focusing on one variable. 

So, let me just state and prove the theorem in the one variable case. first, let us begin with a 

somewhat simplistic statement which we will in a moment generalize to the more general 

version. 

Theorem, let 𝑓: [𝑎, 𝑏] ⟶ 𝑅 be a continuous function, of course, 𝑎 < 𝑏. Assume that 𝑓 is 

differentiable in open interval (a, b) and further that 𝑓’(𝑥) > 0 for all 𝑥 ∈ (𝑎, 𝑏). Then 𝑓 is 

invertible and its range is [𝑓(𝑎), 𝑓(𝑏)] and the inverse function 𝑔 : [𝑓(𝑎), 𝑓(𝑏)] ⟶ [𝑎, 𝑏] is an 

increasing differentiable function strictly increasing I might add, strictly increasing 

differentiable function with the derivative at a particular point 𝑦 =
1

𝑓’(𝑔(𝑦))
 . 

So, let me read out this statement. You have a continuous function from closed interval [𝑎, 𝑏] 

to R. We are assuming that 𝑓 is differentiable in the open interval (𝑎, 𝑏) and further that the 

derivative is greater than 0 at all points.  



Now, we already know that under these hypotheses, the function 𝑓 will be strictly increasing. 

Therefore, we have already shown that 𝑓 is invertible in an earlier module and not only that we 

shown that 𝑓 is invertible, but we have also shown that the inverse is a continuous function.  

So, this inverse being a strictly increasing function is rather obvious. So, we have this inverse  

𝑔 : [𝑓(𝑎), 𝑓(𝑏)] ⟶ [𝑎, 𝑏]. The key assertion is that this inverse is differentiable and you have 

a formula for the derivative of the inverse. 
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Now, the statement is long, but the proof is easy. Proof, we already know please check the 

notes for precise references to the earlier results. We already know from earlier results that that 

𝑓 is invertible and its inverse 𝑔 is continuous. This much we already know. Well, what we do 

is the following. 

Let 𝑓(𝑎) = α and 𝑓(𝑏) = β. We have this function 𝑔 : [α, β] ⟶ [𝑎, 𝑏]. The fact that this is 

strictly increasing is obvious. Now, we have to show that 𝑔 is differentiable on so, let me be 

ultra-precise differentiable function on open (𝑓(𝑎), 𝑓(𝑏)). Now, we have to show that 𝑔 is 

differentiable so, what you do is fix α < 𝑦0< β, we have to show differentiability at this point 

ok.  

Now, because this function is going this function 𝑓 is actually a bijective function, it is certainly 

injective and subjective we know that; we know that we can find; we can find 𝑥0 ∈ (𝑎, 𝑏) such 

that 𝑓(𝑥0) = 𝑦0. In fact, this point is unique because the function 𝑓 will be strictly increasing 



because the derivative is greater than 0 everywhere. Again check precise references in the 

notes. 
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So, we have 𝑓(𝑥0) = 𝑦0. Let 𝑦 ∈ (α, β) be near 𝑦0. Again, we can find; we can find 𝑥 ∈ (𝑎, 𝑏) 

with 𝑓(𝑥) = 𝑦. Now, all this is a setup to take the newton quotient 
𝑔(𝑦)−𝑔(𝑦0)

𝑦−𝑦0
 and by the way 

things have been set up this is nothing but  
𝑥−𝑥0

𝑓(𝑥)−𝑓(𝑥0)
.  

We have set things up, so that this happens and this is nothing but 

1

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
. Of course, this is 

valid if 𝑥 ≠ 𝑥0; all this is valid if 𝑥 ≠ 𝑥0 ok. 
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But 𝑔 is continuous which was the how we began the proof 𝑔 is continuous so, if 𝑦 approaches 

𝑦0 , then this point 𝑥 must approach 𝑥0 simply because 𝑥 = 𝑔(𝑦) and of course, 𝑔(𝑦0) = 𝑥0.  

So,  lim
𝑦→𝑦0

 
𝑔(𝑦)−𝑔(𝑦0)

𝑦−𝑦0
 = lim

𝑥→𝑥0

 

1

𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 . from the remark, I just made that as y goes to 𝑦0 x goes 

to 𝑥0 so, this quantity inside just approaches 
1

𝑓’(𝑥0)
=

1

𝑓’(𝑔(𝑦0))
,  as required. 

So, the proof is fairly straight-forward. You just compute the Newton coefficient. The only key 

part is that there is a function 𝑔 that is inverse that just follows from the fact that f is strictly 

increasing which follows from the fact that the derivative is greater than 0.  

So, this is typical of the proofs in mathematics. What we have done is over the course, we have 

proved several results essentially we are just combining all of them and this proof is immediate 

once you combine all of them ok. 
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So, immediate remark similar result is true 𝑓’(𝑥) < 0 for all 𝑥 ∈ (𝑎, 𝑏). So, that means, 𝑓 will 

be a strictly decreasing function then I had left an exercise for you earlier to show that in this 

case,  actually the inverse of 𝑓 actually exists and the inverse of 𝑓 is going to be continuous so 

on and so forth, it is exactly the same proof will go through ok. 
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Now, I am going to state the general inverse function theorem; the general inverse function 

theorem and I am not going to prove it because it should be rather obvious from the theorem 

that we have already shown. This is the inverse function theorem. Let  𝑓: (𝑎, 𝑏) ⟶ 𝑅  



be 𝐶1-function. Recall this means that the derivative of 𝑓 exists and the derivative is in addition 

continuous. 

Suppose for some 𝑥0 ∈ (𝑎, 𝑏); 𝑓’(𝑥0) ≠ 0;  Then, we can find; we can find open sets 𝑈 ⊂

(𝑎, 𝑏) such that 𝑥0 ∈ 𝑈  and 𝑉 ⊂ 𝑅 such that 𝑓(𝑥0) ∈ 𝑉 satisfying  

(1).  𝑓 is bijective or rather 𝑓|𝑈 is bijective and its image is V. 

 (2) the inverse of 𝑓|𝑈 is also a 𝐶1-function. 

Now, I am not going to prove this intentionally. The crux of this proof is already contained in 

the previous theorem. I want you to sit down and think about this and prove this theorem; it 

will give you a sense of satisfaction simply because this theorem in its several variable 

incarnations is one of the most used results in differential geometry. So, this concludes this 

module.  

This is a course on real analysis, and you have just watched the module on the inverse function 

theorem.  


