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Let us begin with the definition. Definition, this is of point wise convergence. Let 𝑓𝑛: 𝑆 ⟶ 𝑅R 

be a sequence of functions of functions. We say we say 𝑓𝑛  converges to the function  𝑓: 𝑆 ⟶

𝑅 point wise point wise if for each 𝑥 ∈ 𝑆, 𝑓𝑛(𝑥) converges to  𝑓(𝑥) ok. In the last module, we 

have already seen an example of such convergence, we saw that this function 𝑥𝑛 converges to 

the function that is 0 if 𝑥 ∈ [0,1) and 1 if 𝑥 =  1, we already saw this. 
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So, we know that this point wise convergence of a sequence of functions is not a guarantee that 

the limit function will also be continuous, even if you start with the nicest of nice functions 𝑥𝑛 

.  

This is this need not happen. So, what we are going to now do is to reverse engineer and try to 

find out some appropriate condition that will guarantee that the limit function is continuous. 

To do that, let us try to see what goes wrong if we naively try to prove that the limit function 

is continuous. 

So, what we are going to do is we are going to consider 𝑓𝑛 converging to 𝑓 point wise; we have 

point wise convergence 𝑓𝑛 converging to 𝑓. We are going to take 𝑥 ∈ 𝑆 to be a limit point and 

try to show that the limit function 𝑓 is actually going to be continuous at 𝑥 and fail miserably. 

At the isolated points of the set as 𝑓 is anyway continuous, so I do not care about those points. 
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All the issues will come at the limit points ok. So, what we are going to do is the following. 

What we have to do is fix ε >  0, we have to show that  we can find δ > 0 such that if |𝑥 − 𝑦| < 

δ and 𝑦 ∈ 𝑆 , |𝑓(𝑥) − 𝑓(𝑦)| < ε. This is what we have to do ok. 

Now, of course, I must mention 𝑓𝑛’𝑠 are continuous. These functions 𝑓𝑛 are continuous 

otherwise this whole enterprise is doomed to fail right from the beginning ok. So, now, that we 

want to show |𝑓(𝑥) − 𝑓(𝑦)| < ε and the only data, we are given is about the continuity of the 

functions 𝑓𝑛 and the fact that 𝑓𝑛 converges to 𝑓 the natural thing to do is to play the oldest trick 

in the book and introduce 𝑓𝑛’𝑠 by adding and subtracting. 
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So, what we can do is we can add and subtract 𝑓𝑛(𝑥) ok. Then, we can add and subtract 𝑓𝑛(𝑦)  

and then, let us expand this out by triangle inequality, we will get less than or equal  

|𝑓(𝑥) − 𝑓𝑛(𝑥)|+|𝑓𝑛(𝑥)– 𝑓𝑛(𝑦)| + |𝑓𝑛(𝑦) − 𝑓(𝑦)| ok. Now, this splitting up term to get three 

terms in this manner repeatedly arises in analysis.  

So, be very careful and try to understand what exactly is going on ok. Now, if you look at these 

terms carefully and ponder for a few minutes, you might be deluded into thinking that actually 

this professor is saying nonsense; the limit function 𝑓 is certainly continuous. Why? Because 

think about this. |𝑓(𝑥) − 𝑓𝑛(𝑥)| can be made less than 
ε

3
; simply because 𝑓𝑛(𝑥)  is converging 

to 𝑓(𝑥).  

The middle term |𝑓𝑛(𝑥)– 𝑓𝑛(𝑦)| 𝑐an be made less than 
ε

3
  by choosing δ appropriately right. 

Because 𝑓𝑛’𝑠 are continuous, you can choose a δ so that |𝑓𝑛(𝑥)– 𝑓𝑛(𝑦)|  <
ε

3
  .  

And of course, the third term can be made less than 
ε

3
  for exactly the same reason  𝑓𝑛(𝑦) 

converges to 𝑓(𝑦). So, you would think that it is certainly possible to make |𝑓(𝑥) − 𝑓(𝑦)| < 

ε by choosing δ appropriately, but not so quick. 
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Let us see what happens. First of all, we can choose capital 𝑁 so large that |𝑓(𝑥) − 𝑓𝑁(𝑥)|, of 

course this should be capital 𝑁 is less than 
ε

3
  . We can do this simply because the sequence 

𝑓𝑛(𝑥) converges to the point 𝑓(𝑥). We can choose capital 𝑁 so large that |𝑓(𝑥) − 𝑓𝑁(𝑥)| < 
ε

3
. 

So, the first term, we can handle.  

Now, what about the middle term? Well, we can choose δ> 0; we can choose delta greater than 

0 such that |𝑓𝑁(𝑥)– 𝑓𝑁(𝑦)| <  
ε

3
 whenever |𝑥 − 𝑦| <  δ and 𝑦 ∈ 𝑆. We can do this.  

So, what we have done is we have controlled this first term by controlling capital 𝑁. I mean 

small 𝑛 and setting it to be a large enough number capital 𝑁, then we are controlling the second 

by the continuity of 𝑓𝑁. Now, what about the third term? The third term is now we have to 

control 𝑓𝑁(𝑦) − 𝑓(𝑦).  

Now, here is where the issue lies; y could be any point such that |𝑥 − 𝑦| <  δ and 𝑦 ∈ 𝑆 and 

the issue arises because just by ensuring that |𝑓(𝑥) − 𝑓𝑁(𝑥)| < 
ε

3
 does not give us any control 

on |𝑓𝑁(𝑦) − 𝑓(𝑦)|. We might have to bump up this capital 𝑁. We have no control over 𝑦. 
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So, depending on the choice of 𝑦 which is now contained in this which is δ close to 𝑥, we have 

to choose capital 𝑁 possibly higher depending on the choice of 𝑦. So, we cannot make the 

above term less than capital 𝑁; sorry  
ε

3
 without adjusting without adjusting capital 𝑁.  

And this adjustment would depend on the choice of 𝑦. In other words, there is no uniform way  

to do this ok. So, this discussion motivates the following definition. The definition is just 

modeled. So, as to make the above flawed proof not flawed. 
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So, let 𝑓𝑛: 𝑆 ⟶ 𝑅  converge point wise, point wise to the function  𝑓: 𝑆 ⟶ 𝑅. We say 𝑓𝑛 

converges to 𝑓 uniformly. So, uniform convergence is stronger than point wise convergence, 

if for each ε > 0, we can find capital 𝑁 ∈ 𝑁 such that if 𝑛 >  𝑁 is greater than capital N, then  

|𝑓(𝑥) − 𝑓𝑁(𝑥)|  <  ε for all 𝑥 ∈ 𝑆. 

The previous definition of point wise convergence merely said that 𝑓𝑛(𝑥) converges to  𝑓(𝑥). 

Therefore, the choice of 𝑁 would crucially depend on the choice of 𝑥; whereas, in this 

definition of uniform convergence, so this is the definition of uniform convergence; the choice 

of 𝑁 does not depend on the choice of the point 𝑥. You can find a uniform 𝑁 that works 

simultaneously for all the points 𝑥 ∈ 𝑆 ok. 
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So, let us immediately prove a theorem and this theorems proof should be fairly clear. If 

𝑓𝑛: 𝑆 ⟶ 𝑅    are continuous and 𝑓𝑛(𝑥) converges to  𝑓(𝑥) uniformly; of course, 𝑓: 𝑆 ⟶ 𝑅. 

Then, 𝑓 is continuous ok. Let us see the proof; most of the work is done. Let us see the proof 

fix 𝑥 ∈ 𝑆 to be a limit point and fix ε >  0. 
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Again, we can write for 𝑦 ∈ 𝑆, we can write |𝑓(𝑥)– 𝑓(𝑦)| less than or equal to as usual exactly 

as we done as we did in the preceding discussion, |𝑓(𝑥)– 𝑓(𝑦)| ≤ |𝑓(𝑥) − 𝑓𝑛(𝑥) + 𝑓𝑛(𝑥) −

𝑓𝑛(𝑦) + 𝑓𝑛(𝑦) − 𝑓(𝑦)| and this just becomes|𝑓(𝑥) − 𝑓𝑛(𝑥)| + |𝑓𝑛(𝑥) − 𝑓𝑛(𝑦) + |𝑓𝑛(𝑦) −

𝑓(𝑦)|. 

Now, here is the crucial fact, we can find; we can find capital 𝑁 such that both the first term 

first and third term are simultaneously less than 
ε

3
  ok. It does not matter no matter what points 

𝑥 and 𝑦 you choose in the set S, you can always find a capital 𝑁 such that |𝑓(𝑥)– 𝑓𝑛(𝑥)| <
ε

3
  

|𝑓𝑛(𝑦)– 𝑓(𝑦)| <
ε

3
. 
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So, these first and third terms can be made less than 
ε

3
 simultaneously; it does not matter where 

𝑥 and 𝑦 are ok. Now, choose δ > 0 such that the middle term too is less than 
ε

3
 whenever 

|𝑥 − 𝑦| < δ and 𝑦 ∈ 𝑆 ok.  

So, putting all this together, putting all this together, we see that |𝑓(𝑥)– 𝑓(𝑦)| < ε, if |𝑥 − 𝑦| <

δ and 𝑦 ∈ 𝑆. Hence, 𝑓 is continuous ok. So, the definition of uniform convergence was built 

precisely to make this argument work. 

Now, in the next few modules, we will explore certain properties of uniform convergence; how 

it behaves, how uniformly convergent sequence of functions behave under differentiation under 

integration and so on. Then, we will apply these results to power series. It will turn out that any 

power series that converges in a particular interval will do so uniformly with a slight twist, we 

will see more about this in the future modules.  

This is a course on real analysis, and you have just watched the module on uniform convergence 

and continuity of limits. 


