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Let us begin by defining one of the most important classes of functions in all of analysis, in 

fact in all of mathematics. These are the functions that are extensively used both within 

mathematics and outside mathematics in applications to physics etcetera. This is the definition 

of a Smooth function.  

Definition: A function 𝑓: [𝑎, 𝑏] ⟶ 𝑅 is said to be 𝐶∞([𝑎, 𝑏]) or just smooth on [𝑎, 𝑏]; if all 

derivatives of all orders of 𝑓 exists and are continuous in [𝑎, 𝑏]; that means, not only do the 

derivatives of 𝑓 exist first derivative, second derivative third derivative and so on, they are 

continuous as well.. 

Note that this continuity part is sort of redundant, simply because if the derivative 𝑓3 exists at 

all points; then 𝑓2, the second derivative is automatically continuous so on and so forth. We 

could have just said the derivatives of all orders exist at all points that would be enough. But I 

want to emphasize continuity also, so I am adding that ok. Now, examples ,there are plenty, 

since I said this is the most important.  



Examples, polynomials are the good class of examples. Then, what else? Nothing, all the other 

functions that we have so far studied I have taken it for granted that you know. The polynomial 

functions are the most general class of functions we have studied so far. 
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There are other examples. There are 𝑠𝑖𝑛 𝑥, 𝑐𝑜𝑠 𝑥, 𝑒𝑥 etcetera, the so called elementary 

functions; but so far, I have just taken it for granted that these functions are defined and have 

the properties that you are familiar with. We have so far not yet defined these functions 

precisely, which is sort of going against the goal of this course to define everything precisely.  

So, how are we going to define these commonly used smooth functions? Well, one idea 

motivated from the previous theorem about Taylor, which I have sketched is why do not we 

just write down the Taylor series of 𝑒𝑥 or 𝑠𝑖𝑛 𝑥 or 𝑐𝑜𝑠 𝑥 and try to see what happens. 

Well, we already know that the characteristic property of 𝑒𝑥 is that 
𝑑

𝑑𝑥
𝑒𝑥 is equal to 𝑒𝑥 and 

𝑒0 = 1. Immediately, if you start writing down the first few terms in the Taylor series of this 

function 𝑒𝑥 at the point 0, you will get that 𝑒0 which is 1.  

So, 𝑒𝑥 = 1 plus, then the first derivative of 𝑒𝑥 is just 𝑒𝑥 and at 0, it is 1. Then, you will just 

get 1 +  𝑥 ok. Then, you will get 
𝑥2

2!
  because again, the second derivative of 𝑒𝑥 is just 𝑒𝑥 and 

at 0, it is just 1, plus 
𝑥3

3!
 + … 



What I have done is, I have taken the Taylor’s theorem that we have before that if you have a 

function that is 𝑘 +  1 smooth, then you can write the function value at 𝑥 as the values of 𝑓(0) 

𝑓’(0), 𝑓’’(0); that is essentially this Taylor polynomial plus a remainder term. What I am doing 

is, I am throwing away the remainder term and making this an infinite series.  
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Now, question mark is which I should put a giant question mark here is this true. Is it really 

true that 𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+…? Ok. That is the question. If in fact, it is true; then, we can just 

reverse engineer the whole damn thing and just start by saying that 𝑒𝑥 is just this by definition 

ok.  

We can just start our definition of 𝑒𝑥 is this and then, show that it has all the properties that 

characterize 𝑒𝑥; namely, these two ok. Now, that is the idea. Now, before that why would you 

even suspect that this right hand side, this infinite series is not equal to 𝑒𝑥; why would you 

even have a doubt in the first place?  

And that doubt comes because of the existence of many many peculiar smooth functions and 

that is one of the most famous functions in more advanced mathematics which is extensively 

used in the theory of manifolds, this is called the Bump function. 
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I mean this is not essentially the bump function. The bump function can be constructed using 

this function; but I am going to call it the bump function actually, better terminology would be 

Infinitely “flat” function.  
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You will construct the bump function in the exercises using this infinitely flat function. How 

is this function defined? Well, let me just immediately begin with the lemma, which will have 

the definition in it.  



Lemma, the function 𝑓 ∶  𝑅 ⟶ 𝑅 defined by defined by 𝑓(𝑡) = 𝑒
−1

𝑡  if 𝑡 > 0 and 𝑓(𝑡) = 0 

if 𝑡 ≤ 0 is smooth ok. This function which is defined in two pieces as 𝑒
−1

𝑡 , if 𝑡 > 0 and 0, if 

𝑡 ≤ 0 is actually a smooth function. 
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A picture, I urge you to draw a picture of this function will look something like this. In the 

negative axis, it is actually fully 0; its it is just fully 0, but it is sort of infinitely flat at the origin. 

It is sort of infinitely flat at the origin, it attaches to this straight line that is nothing but the 

negative 𝑥 axis in a smooth way. So, this function sort of becomes infinitely flat as you 

approach the origin from the right ok.  

Now, what is this function trying to tell us? Well, if you were to write down the Taylor series 

of this function, the infinite Taylor series you are in for a shock because 𝑓’(0), 𝑓’’(0) and so 

on and so forth are all 0, all the coefficients in this Taylor expansion will be 0. 

So, if you were to write down the Taylor series of this function, you would get a giant 0; which 

is obviously not equal 𝑒
−1

𝑡  which is what the function is when t is greater than 0. So, the Taylor 

series of a smooth function might not have anything to do with the function.  

We are getting a giant 0 here; whereas, the function is 𝑒
−1

𝑡 , when t > 0. So, it is not always true 

that the Taylor series, the infinite Taylor series that you just write down formally will agree 



with the function, that might not always happen. Let us first see a proof that this function is in 

fact smooth ok.  
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So, all we have to do is that we only need to check that all derivatives or better yet derivatives 

of all orders derivatives exist at 0 ok. The reason is that 
1

𝑥
 is a continuous function; 

1

𝑥
 is in fact 

smooth function outside of 0 and so is exponential.  

So, is exponential. Let me just write 
1

𝑡
; or rather in our case 

−1

𝑡
 and so, is exponential. 

Therefore, 𝑒
−1

𝑡 ; which is going to be a composition of smooth functions will be smooth which 

you can prove by induction. 

It is an easy argument to show that 𝑒
−1

𝑡  will be smooth, everywhere except the origin. The 

origin is the only problematic point, where two different functions are being joined. Of course, 

what I said about 𝑒
−1

𝑡 , applies only to 𝑡 >  0.  

for 𝑡 <  0, you do not have to do any work; it is just the identically constant function 0. So, 

the only problematic point is the origin is the origin. First of all 𝑒
−1

𝑡  converges to 0 as t goes to 

0. This is just a well-known property of the exponential function ok. 

This means, the given function 𝑓 is continuous at 0. At least, we are off to a good start, 

continuity follows easily ok. Now, we have to show that the function 𝑓 is actually differentiable 



at the origin. We have to show that it is differentiable at the origin. If at all the function is going 

to be differentiable at the origin, the derivative has to be 0. That is very clear because the 

function is identically 0, whenever 𝑡 ≤ 0 ok. 
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So, when 𝑡 >  0, 
𝑑

𝑑𝑡
𝑒

−1

𝑡   = 𝑒
−1

𝑡  
𝑑

𝑑𝑡

1

𝑡
 = 𝑒

−1

𝑡
1

𝑡2 , ok. We now have the following claim for 𝑡 >  0, 

the kth derivative, kth derivative of 𝑓 is of the form of the form  𝑃𝑘(𝑡)𝑒
−1

𝑡
1

𝑡2𝑘, where 𝑃𝑘(𝑡) is 

some polynomial some polynomial.  

We have already dealt with the base case that is what 
𝑑

𝑑𝑡
𝑒

−1

𝑡  = 𝑒
−1

𝑡
1

𝑡2 is essentially is same. 

What I am saying now is that this is true for all derivatives. So, assume by inductive hypothesis 

that 𝑓(𝑛)(𝑡) is actually of the form  𝑓(𝑛)(𝑡) = 𝑃𝑛(𝑡)  𝑒
−1

𝑡
1

𝑡2𝑛
. 
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Now, we will have to show the same thing for the (𝑛 + 1)th derivative. So, 𝑓𝑛+1(𝑡) = 𝑃𝑛’(𝑡) 

𝑒
−1

𝑡
1

𝑡2𝑛, I am applying the product rule first, plus 𝑃𝑛(𝑡) (𝑒
−1

𝑡
1

𝑡2𝑛)
′

 , ok.  

Now, how do you differentiate this? This is just going to be, I will just concentrate on this term 

𝑒
−1

𝑡
1

𝑡2𝑛
. The derivative of this, this is going to be nothing but 𝑒

−1

𝑡
1

𝑡2𝑛+2
, I am essentially 

differentiating the numerator which is 𝑒
−1

𝑡 which is going to give −
1

𝑡2 squared and another 

minus sign, both will get cancelled. So, I will get 
1

𝑡2. This 
1

𝑡2, I am attaching to the denominator 

plus the derivative of 
1

𝑡2𝑛 ok.  

That is going to be minu,s it is going to be 
𝑒−1/𝑡

𝑡2𝑛+2 −
2𝑛𝑡𝑒−1/𝑡

𝑡2(𝑛+1) . So, please check this; please check 

ok. 
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So, I have just differentiated 
1

𝑡2𝑛 and we get this ok. Now, what does all this give us? It is going 

to give that 𝑓𝑛+1(𝑡) = 𝑡2𝑃𝑛
′(𝑡) + 𝑃𝑛(𝑡) − 2𝑛𝑡𝑃𝑛(𝑡)

𝑒−1/𝑡

𝑡2(𝑛+1) ok. So, this is just a routine 

computation.  

Please check or check the notes for all the details worked out ok. So, we have proved this; we 

have proved the claim  by induction. So, now, we exactly know how 𝑓𝑛+1(𝑡), at 𝑡 > 0 is going 

to look like ok. 

Now, what is our aim is another claim which is going to be proved again by induction. Claim 

is that 𝑓𝑘(0) exists and is equal to 0 which is what we want to show which is equal to 0 ok. 

Obviously, if 𝑓𝑘(0) exists, it is got to be equal to 0 because the left hand derivative, when you 

take just derivative from the left it is going to be 0 because that function is just identically 0, 

when 𝑡 <  0 ok.  

So, what we have to do is to show that when you take the derivative from the right, you still 

get 0 for this to work ok. 
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So, assume again by induction that f k of 0 is equal to 0; f n 𝑓𝑛(0) = 0. Assume that you have 

shown this ok. So, let me just make a remark if this is; if this is confusing, this is for k greater 

than or equal to 0 ok. We have already shown that 𝑓(0) = 0.  

So, the base case is essentially done. Recall that when you put 𝑓0, you just mean 𝑓. When you 

put 𝑓0, f 0 is just another thing for 𝑓 ok. So, you have you are taking 𝑓𝑛(0) and we want to 

show that it is going to be; we are assuming that it is going to be 0 and we want to compute the 

(𝑛 + 1)th derivative of 𝑓 at the origin. 

Again, what you do is this is nothing but 𝑙𝑖𝑚
𝑡→0+

𝑓𝑛(𝑡)−𝑓𝑛(0)

𝑡
 , this is nothing but the definition of 

the derivative from the right at the origin. We already know that 𝑓𝑛(0) = 0 by induction 

hypothesis. So, this is just  lim
𝑡→0+

𝑓𝑛(𝑡)

𝑡
.  

Now, you might understand why we try to claim that 𝑓𝑛(𝑡)is of a particular form. We know 

that 𝑓𝑛(𝑡)this is going to be of a particular form. What is𝑓𝑛(𝑡)? This is just  
𝑃𝑛(𝑡)𝑒

−1
𝑡

𝑡2𝑛

𝑡

, that is 

what the expression inside is going to be ok. So, this is just  
𝑃𝑘(𝑡)𝑒

−1
𝑡

𝑡2𝑛+1 , ok. 
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Now, set 
1

𝑡
= 𝑥. So, this entire expression will just become 𝑃𝑘 (

1

𝑥
)

𝑥2𝑘+1

𝑒𝑥  and now we have to 

compute limit 𝑥 going to plus infinity of this.  

We have to compute limit 𝑥 going to plus infinity of this term ok. But this was already given 

as an exercise. You have already solved; you have already shown that as 𝑥 goes to infinity, this 

quantity, this this converges to 0, ok. 

This is one of the exercises which was first given just for sequences in the chapter on sequences. 

Again, for functions in the chapter on continuity and limits ok. So, this this first term goes to 0 

and this polynomial as 𝑥 approaches infinity, 
1

𝑥
  approaches 0. So, this is going to go to some 

fixed constant. So, this whole thing converges to 0; this whole thing converges to 0. 
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The net upshot of all this is that the right hand derivative of 𝑓 exists of all orders exists and is 

0. So, the net upshot is this is a smooth function; the function 𝑓 is smooth is smooth.  

Yet all derivatives of 𝑓 at the origin are just 0 which means when you write down the Taylor 

series, you will get a giant 0. So, it is not true that if you have a smooth function and you write 

down its Taylor series, infinite Taylor series you get anything useful. It is not always the case 

that you will get anything useful. 

So, now we are going to begin the topic of power series, we are going to study the general 

situation under which it happens that the Taylor series does in fact converge to the given 

function.  

Then, we are going to reverse engineer and define exponential and trigonometric sum 

trigonometric functions directly using these power series and prove that they have the basic 

properties that they indeed have we have taken it for granted whatever properties, we have 

taken it for granted, we are going to prove that they indeed have those properties. 

This is a course on Real Analysis and you have just watched the module on Smooth functions 

and Taylor Series. 


