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Now, that we have proved a very powerful theorem that is the Riemann Lebesgue theorem; we 

can get several consequences for free. I am going to start listing them one by one; most of the 

proofs are trivial, so what I will do is I will just indicate how to prove them and leave the details 

to you. 

So, let me just list them as corollaries,  

Corollary 1; let 𝑓: [𝑎, 𝑏] ⟶ 𝑅 be a bounded function with only a finite set, finite set of 

discontinuities. Then 𝑓 is Riemann integrable; this is because any finite set is of course a set of 

measure zero, so there is really nothing to prove.  

Corollary 2; Let [𝑎, 𝑏]be a closed interval be a closed interval and [𝑐, 𝑑] ⊂ [𝑎, 𝑏], ok.  
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Now, we define χ[𝑐,𝑑]; this is called the indicator or characteristic function of [𝑐, 𝑑]. This can 

be defined more generally for all any subset; but I am just defining it for closed intervals for 

the time being this is by definition, 1 𝑖𝑓𝑥 ∈ [𝑐, 𝑑] and is 0 otherwise. So, this is a function 

whose value is 1 precisely at the points of [c, d] and 0 elsewhere, ok. Then, χ[𝑐,𝑑] is Riemann 

integrable, ok. Now, the proof of this is just one line, proof; the set of discontinuities the set of 

discontinuities of χ[𝑐,𝑑] is a subset of these two points c, d.  

Just these two points are the only possible places, where this function can be discontinuous. 

So, it follows from the previous thing that says that any bounded function with only a finite set 

of discontinuities is automatically Riemann integrable.  
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So, I am going to stop writing corollary and just write a numeral, because it saves time. The 

product of two Riemann integrable functions is Riemann integrable. So, let us see a proof of 

this; the proof is not hard. So, of course, I must write where these functions are defined 

𝑓: [𝑎, 𝑏] ⟶ 𝑅 and 𝑔: [𝑎, 𝑏] ⟶ 𝑅, ok. Now, proof; so obviously 𝑓𝑔 is bounded. 

Now, the discontinuity set 𝐷𝑓𝑔; the set of points where the product 𝑓𝑔 is discontinuous is of 

course going to be a subset of the set of discontinuities of 𝑓, 𝐷𝑓, union the set of discontinuities 

of 𝑔. Note, I do not write equal to; I just write subside subset. Think why, that this will just be 

a subset? 

Hence, 𝐷𝑓𝑔 is a set of measure zero is a set of measure zero; because 𝐷𝑓 and 𝐷𝑔 are sets of 

measure zero, sets of measure zero. This is a really short proof; let us see the next corollary.  
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The next corollary is somewhat involved; let 𝑓: [𝑎, 𝑏] ⟶ [𝑐, 𝑑] be Riemann integrable and 

ϕ: [𝑐, 𝑑] ⟶ 𝑅 continuous, then ϕ ∘ 𝑓 is Riemann integrable is Riemann integrable. Again the 

corollary looks a bit complicated, but the proof is very easy. Proof, let 𝐷𝑓 be the set of 

discontinuities of 𝑓; then the set of discontinuities ϕ ∘ 𝑓 is a subset of 𝐷𝑓. Why is this true? 

Again, because the composition of a two functions will be continuous at a point; if 𝑓 is 

continuous at that point and ϕ is continuous at 𝑓 of that point. So, if you take a point of 

continuity of 𝑓; then ϕ ∘ 𝑓 will automatically be continuous at that point, therefore the only 

point of discontinuities of ϕ ∘ 𝑓 will be a subset of 𝐷𝑓.  

Again, think why I write subset and not equal to, ok. And we are done because subsets of 

measure zero, set are measure zero for the same reason as the previous are measure zero. 

Now, I had rambled on a bit about why I want to prove the somewhat technical Riemann 

Lebesgue theorem saying that, many consequences will become fairly straightforward and I 

have demonstrated at least a few of them. To make this demonstration even more potent, I want 

you to sit down on a nice afternoon and try to prove 3 and 4 directly from the condition that a 

function is Riemann integrable if and only if for each epsilon greater than zero; we can find a 

partition P such that 𝑈(𝑓, 𝑃) − 𝐿(𝑓, 𝑃) < ε. 

Directly from that, can you solve problems 3 and 4? And you will realize that the techniques 

that you use to prove 3 and 4, put together with a little bit of tweak can be used to prove the 

Riemann Lebesgue theorem itself. So, why not just prove the Riemann Lebesgue theorem and 

get it done for once and for all, ok. So, that is one observation that I wanted to make. 
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Let us move on with the corollaries number 5; if 𝑓: [𝑎, 𝑏] ⟶ 𝑅 is Riemann integrable,  then so 

is |𝑓|. This is obvious, because the modulus is a continuous function and you can treat modulus 

of 𝑓 as absolute value composed with the function 𝑓 and apply the previous corollary. So, it 

follows immediately. 6, let a<c< b; suppose 𝑓: [𝑎, 𝑏] ⟶ 𝑅 is Riemann integrable is Riemann 

integrable, ok.  
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Then so is 𝑓 restricted to [𝑎, 𝑐] and 𝑓 restricted to [c, b] and ∫ 𝑓
𝑏

𝑎
= ∫ 𝑓

𝑐

𝑎
+ ∫ 𝑓

𝑏

𝑐
. Again the 

proof of this is very easy;  



Proof: 𝑓 restricted to [𝑎, 𝑐] and 𝑓 restricted to [𝑐, 𝑏] are obviously Riemann integrable,. 

Because the set of discontinuities of each function would be a subset of the set of discontinuities 

of 𝑓, that is obvious, ok. So, both functions will obviously be Riemann integrable. 
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Now, observe that I can write 𝑓 as  𝑓 ⋅ χ[𝑎,𝑐] + 𝑓 ⋅ χ[𝑐,𝑏]. I can write the function 𝑓 as a product 

of the function 𝑓 = 𝑓 χ[𝑎,𝑐] + 𝑓 ⋅ χ[𝑐,𝑏]. Now, with a little bit of thought, it is now clear that 

∫ 𝑓
𝑏

𝑎
 is nothing but ∫ 𝑓

𝑏

𝑎
⋅ χ[𝑎,𝑐] + ∫ 𝑓

𝑏

𝑎
⋅ χ[𝑐,𝑏]. This just follows from linearity, which we have 

established in an earlier module, this is just linearity, ok. 

Now, the little bit of thought part comes now, this is nothing but ∫ 𝑓
𝑏

𝑎
|[a,c] + ∫ 𝑓

𝑏

𝑎
|[c,b]. So, this 

is the part that requires little bit of thought. When I say little bit, I really mean little bit of 

thought, ok. 
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Now, the original proposition says, it is ∫ 𝑓
𝑐

𝑎
+ ∫ 𝑓

𝑏

𝑐
, that is rather easy to see; ∫ 𝑓

𝑏

𝑎
|[a,c] +

 ∫ 𝑓
𝑏

𝑎
|[c,b] is actually same as ∫ 𝑓

𝑐

𝑎
|[a,c]  +  ∫ 𝑓

𝑏

𝑐
|[c,b]. Why? Please check why this is true; again 

this also requires just a little bit of thought. 

So, we have now seen several consequences of the Riemann Lebesgue theorem; none of them 

are particularly difficult, except the last one which requires some thought, but they are all 

straightforward and easy consequences of the Riemann Lebesgue theorem. 

I hope you come out of this module feeling that the effort that was involved in understanding 

the Riemann Lebesgue theorem is certainly worth, worth the hard work. Hope that you solve 

whatever bits that I have left for you.  

This is a course on Real Analysis, and you have just watched the module on Consequences of 

the Riemann Lebesgue Theorem. 


