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We now come to the Riemann-Lebesgue Theorem. We are going to completely characterize 

precisely which functions are continuous. Then we are going to get a huge list of corollaries, 

pretty much all the major theorems of Riemann integrals will follow from this theorem. Now, 

in traditional treatments at the undergraduate level this theorem is usually skipped. 

And instead these properties are proved directly by using the condition that a function is 

integrable if and only if  U(f, p) − L(f, p) can be made less than ε. Now, the reason why I have 

preferred to prove the Riemann-Lebesgue theorem, whose proof by the way is quite 

challenging, is the following. There is a deep idea behind the proof and as we all know ideas 

are bulletproof. 

This idea in various forms is there in the proof of the various properties. By centralizing all the 

deep ideas into one theorem and understanding that once and for all, we have economy of 

thought. You just have to understand this theorem and everything about Riemann integration 

will follow from this. 



So, what is this deep idea that I am talking about? It is essentially this sum, ∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖; 

we want to make this small. For each ε, if you can find a partition such that this is small then 

the function 𝑓 is integrable and vice versa. Now, there are two obstacles to this sum being 

small. One is that this could be really large. This ∑(𝑀𝑖 − 𝑚𝑖) could be really large, second is 

that this could be really large. 

But, notice that we have full control over this Δ𝑥𝑖 , right. We choose the partition. The statement 

of the characterization of Riemann integrability is that, given any ε >  0, we can find a partition 

P such that ∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖 < ε. We have full control over this Δ𝑥𝑖. Therefore, what we are 

going to do is we are going to delicately balance this quantity which could be large at some 

places and this quantity for which we have full control. 

So, the essential idea is the following. Let me first state the theorem; so, that I am not thinking 

out aloud in air. Let me have something concrete in front of you and me. Theorem: A function 

𝑓: [𝑎, 𝑏] ⟶ 𝑅; let me add a bounded function of course, a bounded function is Riemann 

integrable if and only if the set of discontinuities  of 𝑓 is a set of measure zero. 

Now, away from the set of discontinuities, we have control over this (𝑀𝑖 − 𝑚𝑖) . We can make 

it as small as we desire by shrinking the intervals, right. The key is at those points of 

discontinuity, where the function oscillation is going to be greater than 0 we control ∑(𝑀𝑖 −

𝑚𝑖)Δ𝑥𝑖 by making Δ𝑥𝑖 really small.  

And, we can do this because the set of discontinuities is subset of measure zero. Therefore, you 

can cover it by as small open intervals as you desire. So, that is the key fact.  
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So, let us begin the proof and please keep in mind these vague remarks that I am making, you 

shall see you will see these vague remarks coming in front of you alive. So, let us assume first 

𝑓 is integrable ok. The set of discontinuities 𝐷; let us call it 𝐷 is actually going to be equal to,  

you can break it up as, we have done this before as ∪𝑘=1
∞ 𝐷𝑘, where 𝐷𝑘 is just the collection of 

{𝑥 ∈ [0,1]: 𝑜𝑠𝑐𝑥(𝑓) ≥
1

𝑘
} ,ok. Look at the set 𝐷𝑘 which is the set of points 𝑥 ∈ [𝑎, 𝑏], look at 

the set of points where the oscillation is greater than or equal to 
1

𝑘
, call that set 𝐷𝑘, 𝐷 naturally 

decomposes as the union of the various 𝐷𝑘’s ok. 
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Now, suffices to show each 𝐷𝑘 is a set of measure zero. Recall from the previous module that 

a countable union of measure zero sets is a set of measure zero. This follows by 
ε

2𝑛
 trick that 

we have already seen ok. We are going to show that each 𝐷𝑘 is a set of measure zero. 

So, what we do is the following, let 𝑃 be a partition such that 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) <
ε

𝑘
. You will 

understand why I am putting this 𝑘 in the denominator. This 𝑘 is the same 𝑘 here. We are going 

to show that each 𝐷𝑘 is a set of measure zero. So, I should say fix 𝑘 ∈ 𝑁 to be concrete; fix 

𝑘 ∈ 𝑁. 

I am going to show that 𝐷𝑘 is a set of measure zero, Fix 𝑘 ∈ 𝑁 and ε > 0. We can find a 

partition such that 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) < 
ε

𝑘
. This is because we are assuming that the function 𝑓 

is Riemann integrable, ok. 

(Refer Slide Time: 07:10) 

 

How does this help? What is 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝)? It is just ∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖 . This is less than 
ε

𝑘
 

right. How does this help? Well, observe the following because this is less than 
ε

𝑘
, there cannot 

be too many interval coming from the partition. 

So, let us make that precise; let us say 𝑃 = {𝑥0, 𝑥1, … , 𝑥𝑛}. There cannot be too many intervals 

[𝑥𝑖 , 𝑥𝑖+1] such that the terms(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖 is too large; because we have controlled it by saying 

that the net sum is less than 
ε

𝑘
. 



To make this precise, we already know that 
ε

𝑘
 > 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) ≥ ∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖, where I 

am going to sum up over bad. What do I mean by sum up over bad? 
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Where “bad”; let me put this in quotes, is those intervals those determined by the partition of 

course, those intervals determined by the partition P that have an element an element of 𝐷𝑘 in 

its interior ok. So, essentially if you sum up over all these intervals, you will get the entire sum, 

𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝). 

What I am doing is I am only summing up over those intervals such that there is a point in the 

interior, where there is an element of  𝐷𝑘; that means, a point where the oscillation is greater 

than or equal to 
1

𝑘
. Now, why am I doing this? Well, because now this term will be greater than 

or equal ∑
1

𝑘𝑏𝑎𝑑 Δ𝑥𝑖 right. 

Now, how does this help? Well, we already know that the original quantity was 
ε

𝑘
, right. So, 

what we get is ∑ Δ𝑥𝑖𝑏𝑎𝑑   < ε, right. Seems like a miracle has happened, but nothing much has 

happened; all that has happened is k have gotten cancelled ok. So, what we have got is a 

collection of intervals [𝑥𝑖 , 𝑥𝑖+1]; where i comes from the bad set,  
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I will just instead of belaboring the point, I will just say coming from the bad set  that cover all 

those points of 𝐷𝑘 that are in the interior of one of the intervals determined by P ok. 

So, what about the rest of the points of 𝐷𝑘? Well, the rest of the points of 𝐷𝑘, if any there might 

be none; if any are coming from P, right. Either a point is going to be the interiors of one of the 

intervals determined by this partition or it is going to be an end point. The end points are 

precisely the terms and the elements of the partition P right. This is a finite set. 

So, putting all this together, 𝐷𝑘 is a set of measure zero ok. So, the crux of this part of the proof 

was just that we already have good control over the behavior of 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝). So, the 

collection of intervals that happen to have a point of 𝐷𝑘 in its interior, the lengths of those 

intervals cannot be too large; because we have already controlled for it by making 𝑈(𝑓, 𝑝) −

𝐿(𝑓, 𝑝)< 
ε

𝑘
. Excellent. 
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Now, on to part 2 which is to show that if each 𝐷𝑘 is a set of measure zero, then 𝑓 must be 

integrable ok; we have to show this. So, again we are going to use the criterion for Riemann 

integrability that there is a partition P, such that 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) < ε. If I can find such a 

partition then the function is Riemann integrable. 

So, fix ε >  0. We have to find a partition P such that 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) < ε. So, now the crux 

is we have some control over the discontinuities. We have some control over the 

discontinuities, away from the discontinuities the function is nice, it behaves nicely. 

So, we are going to do a proof by cases, but  proof by cases in a subtle way. We are going to 

deal with various points depending on whether it is a point of continuity or a point of 

discontinuity; depending on what it is we are going to deal with it in a different manner. So, it 

is sort of a subtle proof by cases. So, what we do is the following; first each 𝐷𝑘 is a set of 

measure zero. 

So, first choose 𝑘 that 
1

𝑘
<

ε

2(𝑏−𝑎)
. Now, I do not like such magic constants, but here it is sort 

of unavoidable. As it is the proof is a bit technical, you will understand why 2(𝑏 − 𝑎) in a 

moment ok. So, I am going to first choose 𝑘 so large that  
1

𝑘
<

ε

2(𝑏−𝑎)
ok.  

Now, since 𝐷𝑘 is a set of measure zero is a set of measure zero, I am going to pull another 

magic constant out of a hat; we can find we can find an open cover, countable open cover, 



consisting of intervals, l,et us call this fancy 𝒪, such that the net length; the net length of these 

intervals of these intervals is less than 
ε

4𝑀
, ok. 
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What is this capital 𝑀? Where, capital 𝑀 ≔ sup{ |𝑓(𝑥)|: 𝑥 ∈ [𝑎, 𝑏]}, such a supremum exists 

because the function 𝑓 is a bounded function ok. 

So, I am going to take the maximum modulus value of this function 𝑓 and I am going to choose 

an open cover of 𝐷𝑘, such that the net length of those intervals is less than 
ε

4𝑀
, ok. Again another 

magic constant, but bear with me for a few minutes, maybe 10, 15 minutes and you will 

understand where these constants are coming from ok. 

Now, here comes the crux of the proof. What we are going to do now is we are going to control 

the behavior of the function away from the set 𝐷𝑘 by using continuity. The way we are doing 

this is the following. For each point 𝑥 ∈ [𝑎, 𝑏]/𝐷𝑘, we can find an open interval 𝐼𝑥 such that 

𝑜𝑠𝑐𝑥(𝑓) <
1

𝑘
 ok; such that rather we already know this because that is how 𝑥 was chosen.  
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We can find an interval 𝐼𝑥 such that sup
𝑦∈𝐼𝑥

𝑓(𝑦) − inf
𝑦∈𝐼𝑥

𝑓(𝑦) <
1

𝑘
, ok. Because, you are taking a 

point x which is outside of 𝐷𝑘, the oscillation at that point has to be less than 
1

𝑘
; which means 

you can find an interval small interval 𝐼𝑥 that contains x of course, such that x is an element of 

𝐼𝑥. 

That that interval 𝐼𝑥 contains x and moreover when you take the supremum minus the infimum 

is less than 
1

𝑘
. This just comes, this is just the definition of oscillation, just the definition of 

oscillation ok. Now, we can do this for each point 𝑥 ∈ [𝑎, 𝑏]/𝐷𝑘 ok. So, for each, just a second, 

for each 𝑥 ∈ [𝑎, 𝑏]/𝐷𝑘 choose such an 𝐼𝑥. Let me call it some fancy ℐ, be just by definition 

ℐ ≔ {𝐼𝑥: 𝑥 ∈ [𝑎, 𝑏]/𝐷𝑘}. 
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Now, here is the thing. This fancy ℐ ∪ 𝒪  is an open cover is an open cover of [𝑎, 𝑏] right; that 

is because this fancy ℐ covers all those points in closed interval  [𝑎, 𝑏] that are not in 𝐷𝑘 and 

𝐷𝑘 is already covered by the intervals which are in 𝒪 right. So, this ℐ ∪ 𝒪 is an open cover of 

[𝑎, 𝑏]. But, close interval [𝑎, 𝑏] is compact and hence and hence has a Lebesgue number. 

So, recall from our extensive study of topology that there will be a Lebesgue number. What 

does this mean? This just means this is just a number λ >0 such that any 𝐵(𝑥, λ) ⊂ 𝒪 ∈ ℐ ∪

𝒪   ok. So, of course 𝑥 ∈ [𝑎, 𝑏]. 

A Lebesgue number is just the number λ such that if you take the ball of radius λ centered at 

𝑥; where x comes from [𝑎, 𝑏]. This is going to be contained in some one or more of the elements 

of the open cover. So, there will be some 𝑂 ∈ ℐ ∪ 𝒪    which contains this ok; that is why that 

is the definition of Lebesgue number ok. 

Now, here comes the crux. Now, choose a partition P such that successive points are less than 

lambda distance away ok. So, this is called the size or the mesh of the partition that is the least 

that is the least successive distance. 

So, sorry not the least the largest successive distances determined by the partition, that is called 

the size or the mesh; it is good to know this technical term, but it is not very, it is not going to 

play a huge role other than just being a terminology ok. So, what we are doing is the following. 
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You have this 𝑎, 𝑏, you have this 𝑎, 𝑏; you are choosing this partition in such a way that no two 

points, successive points are greater than or equal to λ distance away. They are all less than λ 

distance away ok. So, let 𝐼𝑖 be an interval determined by the partition by the partition ok. 

Since, the net size of this interval is less than λ it is clear that this 𝐼𝑖 ⊂ 𝑂\in ℐ ∪ 𝒪. This is the 

key. So, each one of these intervals determined by the partition is going to be a subset of some 

element. 

So, it is going to be a subset of some element of the open cover ℐ ∪ 𝒪,  ok. Now, let us get back 

to the business of estimating of estimating 𝑈(𝑓, 𝑃 − 𝐿(𝑓, 𝑃). So, 𝑈(𝑓, 𝑃 − 𝐿(𝑓, 𝑃) =

∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖. 
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So, you break this sum into two pieces. You write this as again ∑ (𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖𝑏𝑎𝑑 +

∑ (𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖𝑟𝑒𝑠𝑡 . You are summing up over these intervals and I am saying you break it up 

into two parts. 

The bad part and the rest part, where the bad part comes from those intervals 𝐼𝑖 such that 𝐼𝑖 ⊂

𝑂 ∈ 𝒪. The part that is there coming from cover of 𝐷𝑘. Now, it might happen that some of 

these intervals 𝐼𝑖 are there as a subset of both an element of fancy 𝒪 as well as an element of 

fancy ℐ. 

In that case just make a choice arbitrarily; it really does not matter ok. It really does not matter 

how; just make sure that each interval appears only once. When you are doing the split up, 

some intervals might belong to both that can happen ok; that can happen because of 

redundancies that can happen. Those cases just deal with it arbitrarily; it really does not matter 

ok. Excellent. 

Now, how does this help? Well, think about it for a second. We already know that the sum of 

all the intervals of this script 𝒪, this fancy 𝒪 is less than 
ε

2𝑀
. Now, you might understand why 

we put 
ε

2𝑀
. Look at this first term, this first term is certainly going to be less than or equal to 

2𝑀 ∑ Δ𝑥𝑖𝑏𝑎𝑑 , ok. 



Where did I get 2M from? Well, 𝑀𝑖 − 𝑚𝑖 can at the max be 2M, where M is the supremum of 

|𝑓(𝑥)|, on the whole interval [𝑎, 𝑏] right. And, this we already know is less than 2𝑀
ε

2𝑀
 = ε. 

Actually, I think I made it 4M for this reason; for precisely this reason which is 
ε

2
 . 

So, we have control the first term, the bad part by controlling the behavior of Δ𝑥𝑖 ok. Now, for 

the rest of the terms,  what do we know? We know that (𝑀𝑖– 𝑚𝑖) is certainly going to be less 

than; let us see, it is going to be less than 
1

𝑘
, it is going to be less than 

1

𝑘
. 

So, these terms ∑(𝑀𝑖 − 𝑚𝑖)Δ𝑥𝑖 is certainly going to be less than 
1

𝑘
, ok. Actually, it is not just 

1

𝑘
, it is 

(𝑏−𝑎)

𝑘
. Where does this (𝑏 − 𝑎) come from? Well, it is the sum of all the Δ𝑥𝑖’s that can 

be at the max (𝑏 − 𝑎). 
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Because, we are probably going to sum up over not all the intervals, some of them would have 

gone in the bad part ok. But we already made 𝑘 so large, that 
1

𝑘
<

ε

2(𝑏−𝑎)
. So, this will be less 

than 
ε

2
. 

So, net up short is net up short is 𝑈(𝑓, 𝑝) − 𝐿(𝑓, 𝑝) < ε . Hence, 𝑓 is Riemann integrable; hence 

𝑓 is Riemann integrable. So, again a challenging proof but there is a nice idea of balance in this 

proof. Please go through the details in the notes, where I have written out all the details; of 

course, for the purposes of the lecture I have to just skip some of the details. 



So, please go through it again, this is a complicated theorem. In the next module, we are going 

to see several consequences of this; pretty much all the standard theorems will fall in your lap 

with no difficulty. This is a course on Real Analysis and you have just watched the module on 

the Riemann-Lebesgue theorem. 


