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Dr. Jaikrishnan J
Department of Mathematics
Indian Institute of Technology, Palakkad

Lecture — 27.2

The Riemann-Lebesgue Theorem

(Refer Slide Time: 00:14)

<

The  Riomah - (one G gl ehooram

= el
1h eorm: A Fhr Prlegl 2 IR IS
himar  inkesr 0 e RE oF
A conkhubd  of  F 15 4 S of

Preas we e

We now come to the Riemann-Lebesgue Theorem. We are going to completely characterize
precisely which functions are continuous. Then we are going to get a huge list of corollaries,
pretty much all the major theorems of Riemann integrals will follow from this theorem. Now,

in traditional treatments at the undergraduate level this theorem is usually skipped.

And instead these properties are proved directly by using the condition that a function is
integrable if and only if U(f,p) — L(f, p) can be made less than €. Now, the reason why | have
preferred to prove the Riemann-Lebesgue theorem, whose proof by the way is quite
challenging, is the following. There is a deep idea behind the proof and as we all know ideas
are bulletproof.

This idea in various forms is there in the proof of the various properties. By centralizing all the
deep ideas into one theorem and understanding that once and for all, we have economy of
thought. You just have to understand this theorem and everything about Riemann integration

will follow from this.



So, what is this deep idea that | am talking about? It is essentially this sum, Y.(M; — m;)Ax;;
we want to make this small. For each &, if you can find a partition such that this is small then
the function f is integrable and vice versa. Now, there are two obstacles to this sum being
small. One is that this could be really large. This ),(M; — m;) could be really large, second is

that this could be really large.

But, notice that we have full control over this Ax; , right. We choose the partition. The statement
of the characterization of Riemann integrability is that, given any € > 0, we can find a partition
P such that );(M; — m;)Ax; < . We have full control over this Ax;. Therefore, what we are
going to do is we are going to delicately balance this quantity which could be large at some

places and this quantity for which we have full control.

So, the essential idea is the following. Let me first state the theorem; so, that | am not thinking
out aloud in air. Let me have something concrete in front of you and me. Theorem: A function
fila,b] — R; let me add a bounded function of course, a bounded function is Riemann

integrable if and only if the set of discontinuities of f is a set of measure zero.

Now, away from the set of discontinuities, we have control over this (M; — m;) . We can make
it as small as we desire by shrinking the intervals, right. The key is at those points of
discontinuity, where the function oscillation is going to be greater than 0 we control Y,(M; —

m;)Ax; by making Ax; really small.

And, we can do this because the set of discontinuities is subset of measure zero. Therefore, you

can cover it by as small open intervals as you desire. So, that is the key fact.
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So, let us begin the proof and please keep in mind these vague remarks that | am making, you
shall see you will see these vague remarks coming in front of you alive. So, let us assume first
f is integrable ok. The set of discontinuities D; let us call it D is actually going to be equal to,

you can break it up as, we have done this before as U;’_; Dy, where Dy, is just the collection of

{x € [0,1]: 0sc(f) = %} ,0k. Look at the set D, which is the set of points x € [a, b], look at

the set of points where the oscillation is greater than or equal to % call that set D, D naturally

decomposes as the union of the various D ’s ok.
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Now, suffices to show each Dj is a set of measure zero. Recall from the previous module that

a countable union of measure zero sets is a set of measure zero. This follows by zin trick that

we have already seen ok. We are going to show that each D, is a set of measure zero.

So, what we do is the following, let P be a partition such that U(f,p) — L(f,p) < % You will
understand why | am putting this k in the denominator. This k is the same k here. We are going
to show that each Dy, is a set of measure zero. So, | should say fix k € N to be concrete; fix
k €N.

| am going to show that Dy, is a set of measure zero, Fix k € N and € > 0. We can find a

partition such that U(f,p) — L(f,p) < % This is because we are assuming that the function f

is Riemann integrable, ok.

(Refer Slide Time: 07:10)

<

Lok P W a Prbéon Suh it
WEP) — LG D< E
7 A

£ (m-m) Ox; & _ge)
Z s

&

Pz { &, e ayf
£ s

£ovwn > 5 mi)mi
W

2 g (M-m)bX
bag

How does this help? What is U(f,p) — L(f,p)? Itis just }(M; — m;)Ax; . This is less than %
right. How does this help? Well, observe the following because this is less than % there cannot

be too many interval coming from the partition.

So, let us make that precise; let us say P = {x,, x4, ..., X, }. There cannot be too many intervals

[x;, x;+1] such that the terms(M; — m;)Ax; is too large; because we have controlled it by saying

that the net sum is less than %



To make this precise, we already know that % >U(f,p) — L(f,p) = 2(M; — m;)Ax;, where |

am going to sum up over bad. What do | mean by sum up over bad?
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Where “bad”; let me put this in quotes, is those intervals those determined by the partition of
course, those intervals determined by the partition P that have an element an element of Dy, in

its interior ok. So, essentially if you sum up over all these intervals, you will get the entire sum,

What | am doing is I am only summing up over those intervals such that there is a point in the

interior, where there is an element of D, ; that means, a point where the oscillation is greater

than or equal to % Now, why am | doing this? Well, because now this term will be greater than

or equal Ypq4 %Axi right.

Now, how does this help? Well, we already know that the original quantity was % right. So,

what we get is )., .4 Ax; < €, right. Seems like a miracle has happened, but nothing much has
happened; all that has happened is k have gotten cancelled ok. So, what we have got is a

collection of intervals [x;, x;,1]; where i comes from the bad set,
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I will just instead of belaboring the point, | will just say coming from the bad set that cover all

those points of D, that are in the interior of one of the intervals determined by P ok.

So, what about the rest of the points of D, ? Well, the rest of the points of Dy, if any there might
be none; if any are coming from P, right. Either a point is going to be the interiors of one of the
intervals determined by this partition or it is going to be an end point. The end points are

precisely the terms and the elements of the partition P right. This is a finite set.

So, putting all this together, D, is a set of measure zero ok. So, the crux of this part of the proof
was just that we already have good control over the behavior of U(f,p) — L(f,p). So, the
collection of intervals that happen to have a point of D, in its interior, the lengths of those

intervals cannot be too large; because we have already controlled for it by making U(f,p) —

L(f,p)< % Excellent.
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Now, on to part 2 which is to show that if each D, is a set of measure zero, then f must be
integrable ok; we have to show this. So, again we are going to use the criterion for Riemann
integrability that there is a partition P, such that U(f,p) — L(f,p) < &. If | can find such a

partition then the function is Riemann integrable.

So, fix € > 0. We have to find a partition P such that U(f,p) — L(f,p) < €. So, now the crux
is we have some control over the discontinuities. We have some control over the

discontinuities, away from the discontinuities the function is nice, it behaves nicely.

So, we are going to do a proof by cases, but proof by cases in a subtle way. We are going to
deal with various points depending on whether it is a point of continuity or a point of
discontinuity; depending on what it is we are going to deal with it in a different manner. So, it
is sort of a subtle proof by cases. So, what we do is the following; first each D, is a set of
measure zero.
£

2(b-a)’
of unavoidable. As it is the proof is a bit technical, you will understand why 2(b — a) in a

So, first choose k that% < Now, | do not like such magic constants, but here it is sort

ok.

moment ok. So, |1 am going to first choose k so large that % < 200-3)

Now, since D, is a set of measure zero is a set of measure zero, | am going to pull another

magic constant out of a hat; we can find we can find an open cover, countable open cover,



consisting of intervals, l,et us call this fancy O, such that the net length; the net length of these

intervals of these intervals is less than ﬁ, ok.
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What is this capital M? Where, capital M := sup{|f(x)|: x € [a, b]}, such a supremum exists

because the function f is a bounded function ok.

So, I am going to take the maximum modulus value of this function f and | am going to choose
an open cover of Dy, such that the net length of those intervals is less than j ok. Again another

magic constant, but bear with me for a few minutes, maybe 10, 15 minutes and you will

understand where these constants are coming from ok.

Now, here comes the crux of the proof. What we are going to do now is we are going to control
the behavior of the function away from the set D, by using continuity. The way we are doing

this is the following. For each point x € [a, b]/D,,, we can find an open interval I, such that

osc,(f) < % ok; such that rather we already know this because that is how x was chosen.
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We can find an interval I, such that sup f(y) — iglf fiy) < % ok. Because, you are taking a
Vel YElx

point X which is outside of D,, the oscillation at that point has to be less than %; which means

you can find an interval small interval I, that contains x of course, such that x is an element of
L.

That that interval I, contains x and moreover when you take the supremum minus the infimum
is less than % This just comes, this is just the definition of oscillation, just the definition of

oscillation ok. Now, we can do this for each point x € [a, b]/D,, ok. So, for each, just a second,
for each x € [a, b]/D,, choose such an I,. Let me call it some fancy 7, be just by definition
J = {l,;:x € [a,b]/Dy}.
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Now, here is the thing. This fancy 7 U O is an open cover is an open cover of [a, b] right; that
is because this fancy 7 covers all those points in closed interval [a, b] that are not in D, and
D, is already covered by the intervals which are in O right. So, this 7 U O is an open cover of

[a, b]. But, close interval [a, b] is compact and hence and hence has a Lebesgue number.

So, recall from our extensive study of topology that there will be a Lebesgue number. What
does this mean? This just means this is just a number A >0 such that any B(x,A) c 0 € J U

O ok. So, of course x € [a, b].

A Lebesgue number is just the number A such that if you take the ball of radius A centered at
x; where x comes from [a, b]. This is going to be contained in some one or more of the elements
of the open cover. So, there will be some 0 € U O which contains this ok; that is why that

is the definition of Lebesgue number ok.

Now, here comes the crux. Now, choose a partition P such that successive points are less than
lambda distance away ok. So, this is called the size or the mesh of the partition that is the least

that is the least successive distance.

So, sorry not the least the largest successive distances determined by the partition, that is called
the size or the mesh; it is good to know this technical term, but it is not very, it is not going to

play a huge role other than just being a terminology ok. So, what we are doing is the following.
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You have this a, b, you have this a, b; you are choosing this partition in such a way that no two
points, successive points are greater than or equal to A distance away. They are all less than A

distance away ok. So, let I; be an interval determined by the partition by the partition ok.

Since, the net size of this interval is less than A it is clear that this I; € O\in 7 U O. This is the
key. So, each one of these intervals determined by the partition is going to be a subset of some

element.

So, it is going to be a subset of some element of the open cover 7 U O, ok. Now, let us get back
to the business of estimating of estimating U(f,P — L(f,P). So, U(f,P — L(f,P) =
2(M; — my)Ax;.
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So, you break this sum into two pieces. You write this as again Y.,,q.(M; — m;)Ax; +
Yrese(M; —m;)Ax;. You are summing up over these intervals and | am saying you break it up

into two parts.

The bad part and the rest part, where the bad part comes from those intervals I; such that I;
0 € 0. The part that is there coming from cover of D,. Now, it might happen that some of
these intervals I; are there as a subset of both an element of fancy O as well as an element of

fancy 7.

In that case just make a choice arbitrarily; it really does not matter ok. It really does not matter
how; just make sure that each interval appears only once. When you are doing the split up,
some intervals might belong to both that can happen ok; that can happen because of
redundancies that can happen. Those cases just deal with it arbitrarily; it really does not matter

ok. Excellent.

Now, how does this help? Well, think about it for a second. We already know that the sum of

all the intervals of this script O, this fancy O is less than ﬁ Now, you might understand why

we put ﬁ Look at this first term, this first term is certainly going to be less than or equal to

2M Zbad Axl-, ok.



Where did | get 2M from? Well, M; — m; can at the max be 2M, where M is the supremum of

|f (x)|, on the whole interval [a, b] right. And, this we already know is less than ZMﬁ =&

Actually, 1 think 1 made it 4M for this reason; for precisely this reason which is E .

So, we have control the first term, the bad part by controlling the behavior of Ax; ok. Now, for

the rest of the terms, what do we know? We know that (M;-m;) is certainly going to be less

than; let us see, it is going to be less than % it is going to be less than %

So, these terms ),(M; — m;)Ax; is certainly going to be less than % ok. Actually, it is not just

(b—a)

%, itis . Where does this (b — a) come from? Well, it is the sum of all the Ax;’s that can

be at the max (b — a).
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Because, we are probably going to sum up over not all the intervals, some of them would have

So this will be less

gone in the bad part ok. But we already made k so large, that% Z(b

than <.
2

So, net up shortis net up shortis U(f,p) — L(f,p) <e.Hence, f is Riemann integrable; hence
f is Riemann integrable. So, again a challenging proof but there is a nice idea of balance in this
proof. Please go through the details in the notes, where | have written out all the details; of

course, for the purposes of the lecture I have to just skip some of the details.



So, please go through it again, this is a complicated theorem. In the next module, we are going
to see several consequences of this; pretty much all the standard theorems will fall in your lap
with no difficulty. This is a course on Real Analysis and you have just watched the module on

the Riemann-Lebesgue theorem.



