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Power Series

In the last week, we defined the notion of complex differentiability. We saw that

complex differentiable functions also satisfy the laws of calculus, namely linearity, the

product rule, quotient rule and also the chain rule. Thereafter, we saw a few examples

of complex differentiable functions and in particular we noted that polynomials in the

variable z are complex differentiable in the entire complex plane; they are entire func-

tions.

This week we begin by discussing the notion of power series. Power series is an in-

finite degree variant of a polynomial inside its disk of convergence. A power series be-

haves very similar to polynomials both analytically and algebraically. Let us start this

lecture by defining a power series around a point z0 in the complex plane.
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Let z0 ∈ C. A formal power series around z0 with complex coefficients is a formal

expansion,
∞∑

n=0
an(z − z0)n

where an ∈C and z is an indeterminate.

We could ask whether a formal power series converges at a given point z ∈C.

For example, at z0, the formal power series
∞∑

n=0
an(z − z0)n converges absolutely.

Another example is,consider the geometric series,
∞∑

n=0
zn , then for any z with |z| ≥ 1,

the summands, |zn | > 1 and does not converge to 0. Hence
∞∑

n=0
zn does not converge.

(Refer Slide Time: 05:18)

Radius of Convergence

Let
∞∑

n=0
an(z − z0)n be a formal power series around z0. We define the radius of con-

vergence R of the formal power series to be the number in [0,∞] given by

R := liminf
n→0

|an |−1/n

.
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The radius of convergence, as the name suggests, is a quantity which tells us some-

thing about the convergence of the given formal power series which is captured in the

next proposition.

(Refer Slide Time: 07:41)

PROPOSITION 1. Let
∞∑

n=0
an(z−z0)n be a power series around z0. Let R be the radius of

convergence of the power series. Then for z ∈ D(z0,R), the series
∞∑

n=0
an(z − z0)n converges

absolutely. For r < R, the series converges uniformly on D(z0,r ). Furthermore, if |z −z0| >
R, then

∞∑
n=0

an(z − z0)n diverges.

(The disc D(z0,R) is called the disc of convergence of the formal power series).

PROOF. Let z ∈C such that |z − z0| > R. Then ∃ infinitely many n ∈N such that

|an |−1/n < |z − z0| =⇒ |an |−1/n |z − z0| > 1 =⇒ |an(z − z0)n | > 1

for infinitely many n ∈N→ (∗). Since the summands does not converge to 0(by (∗)), we

can conclude that
∞∑

n=0
an(z − z0)n does not converge.

Let z ∈ D(z0,R) =⇒ |z − z0| < r < R for some r > 0. Since R = liminf
n→∞ |an |−1/n , ∃ N ∈N

such that ∀n > N , |an |−1/n > r =⇒ |an |r n < 1∀n > N .
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(Refer Slide Time: 17:19)

For n > N ,

|an(z − z0)n | = |anr n | |z − z0|n
r n

≤
( |z − z0|

r

)n

∑
n>N

an(z − z0)n ≤ ∑
n>N

( |z − z0|
r

)n

.

Hence
∞∑

n=0
|an(z − z0)n | converges. That is

∞∑
n=0

an(z − z0)n converges absolutely.

Let r < R and R1 be such that r < R1 < R. ∃N ∈N such that ∀n > N , |an |−1/n > R1 > r . For

n > 1 and z ∈ D(z0,r ),

|an(z − z0)n | = |anRn
1 |
|z − z0|n

Rn
1

≤
(

r

R1

)n

. Since
∞∑

n=0

(
r

R1

)n

is a convergent series, given ε> 0,∃N0 > N such that
∑

n≥N0

(
r

R1

)n

< ε.

(Refer Slide Time: 23:24)
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Then,

|
∞∑

n=0
an(z − z0)n −

N0∑
n=0

an(z − z0)n | = | ∑
n>N0

an(z − z0)n |

< ∑
n≥N0

(
r

R1

)n

< ε.

�

(Refer Slide Time: 24:26)
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PROPOSITION 2. Let
∞∑

n=0
an(z − z0)n be a formal power series with radius of conver-

gence R. Assume that an is non-zero for n sufficiently large. Then

liminf
n→∞

|an |
|an+1|

≤ R ≤ limsup
n→∞

|an |
|an+1|

.

PROOF. Let R1 = liminf
n→∞

|an |
|an+1|

. Let r < R1. Then ∃N ∈N such that ∀n > N ,

|an |
|an+1|

> r =⇒ |an+1|r < |an |.

(Refer Slide Time: 27:45)
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For z ∈ D(z0,r ) and n > N ,

|an+1(z − z0)n+1| = |an+1|
( |z − z0|

r

)n+1

< |anr n |
( |z − z0|

r

)n+1

...

< ∣∣aN r N
∣∣( |z − z0|

r

)n+1

.

Hence
∑

n≥N
|an(z − z0)n | ≤ ∣∣aN r N

∣∣ ∑
n≥N

( |z − z0|
r

)n

.

Hence
∞∑

n=0
an(z − z0)n converges =⇒ D(z0,r ) ⊆ {z : |z − z0| ≤ R} =⇒ r ≤ R. Since this is

true for all r < R1, we have R1 ≤ R → (∗).

Let R2 = limsup
n→∞

|an |
|an+1|

. Let r > R2 and let z ∈ C be such that |z − z0| > r . Since r >
R2,∃N ∈N such that ∀n > N ,

|an |
|an+1|

< r =⇒ |an+1r | > |an |.
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Then for n > N ,

|an+1(z − z0)n+1| > |an+1r n+1| > |anr n | · · · > |aN r N | = M(say)

Since the summands do not converge to 0,
∞∑

n=0
an(z − z0)n does not converge.

That is, {z : |z − z0| > r } ⊆ {z : |z − z0| ≥ R} =⇒ D(z0,R) ⊆ {z : |z − z0| ≤ r } =⇒ R ≤ r .

Since this is true for all r > R2 =⇒ R ≤ R2 → (∗∗).

By (∗) and (∗∗), liminf
n→∞

|an |
|an+1|

≤ R ≤ limsup
n→∞

|an |
|an+1|

. �

EXAMPLE 3.

• ez =
∞∑

n=0

zn

n!

Here an = 1

n!
. Now,

|an |
|an+1|

= (n +1)!

n!
= (n +1). Hence the radius of conver-

gence is infinite.

(Refer Slide Time: 38:12)
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•
∞∑

n=0
n!zn .

Then
|an |
|an+1|

= (n!

(n +1)!
= 1

(n +1)
→ 0 as n →∞. Hence the series converges

only at the origin.

•
∞∑

n=0
zn has radius of convergence 1. For |z| = 1, the series diverges. For z ∈

D(0,1), we have

z
∞∑

n=0
zn =

∞∑
n=0

zn+1

=
∞∑

n=1
zn

=
∞∑

n=0
zn −1.

On D(0,1), we have
∞∑

n=0
zn = 1

1− z
.

(Refer Slide Time: 41:10)
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On C\ {1}, the function
1

1− z
is holomorphic. Now note that

1

1− z
is a func-

tion which extends beyond D(0,1) which is the disc of convergence of
∞∑

n=0
zn .

•
∞∑

n=0

zn

n2
has a radius of convergence 1.

For z ∈C such that |z| = 1,
∞∑

n=0

zn

n2
converges.

Abel’s Theorem: Let F (z) =
∞∑

n=0
an(z − z0)n be a power series with a positive radius

of convergence R and suppose z1 = z0 +Re iθ be a point such that F (z1) converges. Then

lim
r→R− F (z0 + r e iθ) = F (z1).

(Refer Slide Time: 45:18)
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PROOF. We may assume that F (z1) = 0.

Define G(z) = F (z) − F (z1) =
∞∑

n=0
bn(z − z0)n where bn = an∀n > 0,b0 = a0 − F (z1). If

lim
r→R−G(z0 + r e iθ) = 0, then lim

r→R−(F (z0 + r e iθ)−F (z1)) = 0. Hence we shall assume that

F (z1) = 0.

We can also assume z0 = 0.

(Refer Slide Time: 48:34)
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Define G(z) =
∞∑

n=0
an zn . If G(r e iθ) = 0 and lim

r→R−G(r e iθ) = 0, then reader should verify

that lim
r→R−G(r e iθ) = lim

r→R− F (z0 + r e iθ) = 0. Hence we shall assume that z0 = 0.

Thus if we prove for the power series around 0, we can translate it can conclude that it is

true for all power series around any arbitrary point.

(Refer Slide Time: 50:40)

We may also assume that R = 1 and θ = 0.

Let G(z) =∑
anRne−i nθzn = F (Re−i nθz).

The radius of convergence of G = liminf
n→∞ |an |−1/nR−n/n = 1

R
liminf

n→∞ |an |−1/n = 1. If G(1) = 0

and lim
r→1−

G(r ) = 0, then lim
r→R− F (r e iθ) = 0.

Hence to prove the theorem, it is enough to prove the following:

Let
∑

an be a series converging to 0. Then lim
r→1−

∑
anr n = 0.

(Refer Slide Time: 54:42)
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Let An = a0 +a1 +·· ·+an . Given ε> 0,∃N such that ∀n > N , |An | < ε
2 .

m∑
n=0

anr n = A0 + (A1 − A0)r +·· ·+ (Am − Am−1)r m

=
m−1∑
n=0

An(r n − r n+1)+ Amr m

= (1− r )
m−1∑
n=0

Anr n + Amr m .

Hence
∞∑

n=0
anr n = (1− r )

m−1∑
n=0

Anr n → (∗).

For r < 1 and given ε> 0 as above, R.H.S of (∗) becomes,∣∣∣∣∣(1− r )
N∑

n=0
Anr n + (1− r )

∞∑
n=N

Anr n

∣∣∣∣∣≤ (1− r )

∣∣∣∣∣ N∑
n=0

Anr n

∣∣∣∣∣+ (1− r )
∞∑

n=N
|An |r n

< (1− r )

∣∣∣∣∣ N∑
n=0

Anr n

∣∣∣∣∣+ (1− r )
ε

2

r N

(1− r )

< (1− r )

∣∣∣∣∣ N∑
n=0

Anr n

∣∣∣∣∣+ ε

2
.
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Then the function
N∑

n=0
Anr n is a continuous on [0,1]. Hence ∃M such that∣∣∣∣ N∑

n=0
Anr n

∣∣∣∣< M ∀ r ∈ [0,1].

Let r be such that (1− r ) < ε

2M
. Then (1− r )

∣∣∣∣ ∞∑
n=0

Anr n

∣∣∣∣< ε

2M
M = ε

2
.

Hence lim
r→1−

∑
anr n = lim

r→1−

(
(1− r )

∞∑
n=0

Anr n
)
= 0.

�


